A

Fig. 1.9. Model for an icosahedral virus constructed using a local rule-based theory of virus shell assembly. In this model the shaded balls represent protein molecular units [1.47].

method for generating large amounts of C60 [1.49]. It is not believed, however, that the origin of fullerenes in other fullerene-containing minerals [1.50] is due to lightening strikes. For example, shungite is a very old geological fullerene-containing mineral deposit, which may predate living plants, and is of particular interest, regarding its origin. There is now much activity by geologists looking for fullerenes in other geological deposits.

Fullerenes are found in many places. For example, it has been said that dinner candles generate an estimated 2-40 fullerenes. The ability to produce fullerenes in flames has been explored in much detail [1.51].

m ■
Fig. 1.10. Shaded surface representations of the bacteriophage <J>X174 reconstruction viewed along a twofold axis (a) and along a fivefold axis (b). The scale bar is 15 nm [1.48],

The approach taken in this book is to initiate the discussion of each subject with a detailed treatment of the isolated fullerene molecules and then to consider the condensed state as a weakly interacting system. This book begins in Chapter 2 with a discussion of the fundamentals of carbon materials. Chapters 3-6 focus on molecular properties of fullerenes, with the structure of fullerene molecules reviewed in Chapter 3 and the group theoretical treatment of CM and related fullerenes in Chapter 4. The synthesis, extraction, and purification of fullerenes are reviewed in Chapter 5, and Chapter 6 is devoted to the growth, contraction, and fragmentation of fullerenes. The crystalline structure of selected fullerene solids is reviewed in Chapter 7, and Chapter 8 treats the classification and structure of doped fullerenes. Chapter 9 reviews the synthesis of crystalline fullerene solids and thin films. Chemistry issues related to fullerenes are briefly discussed in Chapter 10. The spectra of vibrational modes in fullerenes are reviewed in Chapter 11; the electronic structure in Chapter 12; the optical properties in Chapter 13; the transport and thermal properties in Chapter 14; the superconducting properties of doped fullerenes in Chapter 15; nuclear magnetic resonance (NMR), electron spin resonance and magnetic susceptibility in Chapter 16; scanning tunneling microscopy (STM), surface science studies, and electron spectroscopies in Chapter 17; and the mag netic properties of fullerene-related solids in Chapter 18. In Chapter 19 we review the structure and properties of carbon nanotubes, and finally we discuss some possible applications of fullerenes in Chapter 20.

References

[1.1] L. Saffaro. In C. Taliani, G. Ruani, and R. Zamboni (eds.), Proc. of the First Italian Workshop on Fullerenes: Status and Perspectives, vol. 2, p. 55, Singapore (1992). World Scientific.

[1.2] F. Chung and S. Sternberg. American Scientist, 81, 56 (1993).

[1.3] A. Dürer (1471-1528). German artist who made an early model of a regular truncated icosahedron.

[1.4] H. Terrones and A. L. MacKay. Carbon, 30, 1251 (1992).

[1.6] L. Tisza. Zeitschrift für Physik, 82, 48 (1933).

[1.7] E. Osawa. Kagaku (Kyoto), 25, 854 (1970). In Japanese.

[1.8] D. A. Bochvar and E. G. Gal'pern. Dokl. Akad. Nauk SSSR, 209, 610 (1973). English translation: Proc. Acad. Sei. USSR 209, 239 (1973).

[1.9] I. V. Stankevich, M. V. Nikerov, and D. A. Bochvar. Russ. Chem. Rev., S3, 640 (1984).

[1.10] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley. Nature (London), 318, 162 (1985).

[1.11] H. W. Kroto. Chem. Soc. Rev., 11, 435 (1982).

[1.13] A. Leger and J. L. Puget. Astr. Astrophys. Lett., 137, L5 (1984).

[1.14] A. Leger, L. d'Hendecourt, L. Verstraete, and W. Schmidt. Astr. Astrophys., 203, 145

[1.15] T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley. J. Chem. Phys., 74, 6511 (1981).

[1.17] J. P. Hare and H. W. Kroto. Accounts of Chem. Research, 25, 106 (1992).

[1.18] E. A. Rohlfing, D. M. Cox, and A. Kaldor. J. Chem. Phys., 81, 3322 (1984).

[1.19] K. S. Pitzer and E. Clementi. J. Am. Chem. Soc., 81, 4477 (1959).

[1.20] G. von Helden, M. T. Hsu, P. R. Kemper, and M. T. Bowers. J. Chem. Phys., 95, 3835 (1991).

[1.21] H. S. Carman, Jr. and R. N. Compton. J. Chem. Phys., 98, 2473 (1993).

[1.22] R. E. Smalley. Accounts of Chem. Research, 25, 98 (1992).

[1.23] Q. L. Zhang, S. C. O'Brien, J. R. Heath, Y. Liu, R. F. Curl, H. W. Kroto, and R. E. Smalley. J. Phys. Chem., 90, 525 (1986).

[1.24] J. R. Heath, S. C. O'Brien, Q. Zhang, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Tittel, and R. E. Smalley. J. Am. Chem. Soc., 107, 7779 (1985).

[1.25] F. D. Weiss, S. C. O'Brien, J. L. Eklund, R. F. Curl, and R. E. Smalley. J. Am. Chem. Soc., 110, 4464 (1988).

[1.26] S. C. O'Brien, J. R. Heath, R. F. Curl, and R. E. Smalley. J. Chem. Phys., 88, 220

[1.27] R. Taylor, J. P. Hare, A. K. Abdul-Sada, and H. W. Kroto. J. Chem. Soc. Chem. Commun., 20, 1423 (1990).

[1.28] R. D. Johnson, G. Meijer, and D. S. Bethune. J. Am. Chem. Soc., 112, 8983 (1990).

[1.29] R. Tycko, R. C. Haddon, G. Dabbagh, S. H. Glarum, D. C. Douglass, and A. M. Mujsce. J. Phys. Chem., 95, 518 (1991).

[1.30] R. D. Johnson, D. S. Bethune, and C. S. Yannoni. Accounts of Chem. Res., 25, 169 (1992).

[1.31] W. Krätschmer, K. Fostiropoulos, and D. R. Huffman. In E. Bussolettii and A. A. Vittone (eds.), Dusty Objects in the Universe, Dordrecht (1989). Kluwer Academic Publishers. Proceedings of the 4th Inter. Workshop of the Astronomical Observatory of Capodimonte, Capri, Italy.

[1.32] W. Krätschmer, K. Fostiropoulos, and D. R. Huffman. Chem. Phys. Lett., 170, 167 (1990).

[1.33] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman. Nature (London), 347, 354 (1990).

[1.34] W. Krätschmer and D. R. Huffman. Carbon, 30, 1143 (1992).

[1.35] R. F. Curl and R. E. Smalley. Science, 242, 1017 (1988).

[1.36] R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, and F. A. Thiel. Nature (London), 350, 320 (1991).

[1.37] A. F. Hebard. Physics Today, 45, 26 (1992). November issue.

[1.38] In H. W. Kroto, J. E. Fischer, and D. E. Cox (eds.), The Fullerenes, Pergamon Press, Oxford (1993).

[1.39] R. W. Marks. The Dynamics World of Buckminster Fuller. Southern Illinois University Press (1960).

[1.40] J. McHale. R. Buckminster Fuller. George Braziller, Inc., New York (1962).

[1.41] R. B. Fuller and E. J. Applewhite. In Synergetics: Explorations in the Geometry of Thinking, Garland Publishers, Inc., New York (1975).

[1.42] R. B. Fuller. In W. Marlin (ed.), The Artifacts of R. Buckminster Fuller: A Comprehensive Collection of His Designs and Drawings, Garland Publishers, Inc., New York (1984).

[1.43] In J. Ward (ed.), The Artifacts ofR. Buckminster Fuller. Gardland Publishers, Inc., New York (1985). Vol. 3 and 4.

[1.44] D. Koruga, S. Hameroff, J. Withers, R. Loutfy, and M. Sundareshan. Fullerene C^: History, Physics, Nanobiology, Nanotechnology. North-Holland, Amsterdam (1993).

[1.45] D. W. Thompson. Growth and Form. Cambridge at the University Press (1963).

[1.46] J. E. Johnson and A. J. Fisher. Encyclopedia of Virology, pp. 1573-1586. Academic Press Ltd., London (1994). Vol. 3; Principles of Virus Structure.

[1.47] B. Berger, P. W. Shor, L. Tucker-Kellogg, and J. King. Proc. Nat. Acad. Sei., 91, 7732 (1994).

[1.48] N. H. Olson, T. S. Baker, P. Willingmann, and N. L. Incardona. J. Structural Biology, 108, 168 (1992).

[1.49] T. K. Daly, P. R. Buseck, P. Williams, and C. F. Lewis. Science, 259, 1599 (1993).

[1.50] P. R. Buseck, S. J. Tsipursky, and R. Hettich. Science, 257, 215 (1992). ibid. p. 167.

[1.51] J. B. Howard, A. L. Lafleur, Y. Makarovsky, S. Mitra, C. J. Pope, and T. K. Yaday. Carbon, 30, 1183 (1992).

Was this article helpful?

0 0

Post a comment