Info

Ill-

ridge-like

aThe C84-C84 distance is for a thin film of C84 grown on Si (100) 2 x 1 [17.126].

aThe C84-C84 distance is for a thin film of C84 grown on Si (100) 2 x 1 [17.126].

an fee structure [17.126]. The STM image of C84 on Si (100) shows internal stripe structures similar to those found for C60. It is also concluded that at room temperature the C84 molecules are not rotating. STM images show that the orientation of the individual C84 molecules is somewhat random, and the cohesive energy among the C84 molecules is different, depending on the molecular orientation [17.126]. The desorption temperature TD of C„c molecules from an Si (100) surface increases with increasing fullerene mass, so that the Tm phase transition temperature for internal rotations for C84 is expected to increase relative to that for C60, likely to values above room temperature [17.126],

Temperature-programmed desorption studies indicate that a temperature of ~400°C is needed to desorb C84 from multilayers of Cg4, while a temperature of ~1000°C is needed to remove the last C84 monolayer from Si (100). Above 1000°C, SiC bonds are formed, and the carbon cannot easily be removed. Multiple layer islands form after the first monolayer of C84 on Si (100) is complete [17.126].

Fullerene overlayer structures on GaAs (110) are basically different from similar structures on Si (100) because, in the case of the GaAs (110) substrate, the interaction between fullerenes is stronger than the interaction between the fullerene and the GaAs (110) substrate. As a consequence, C60 at room temperature rotates freely on a GaAs (110) surface, so that intramolecular features are time averaged over the fullerene motion, and no resolved internal structure for C70, C76, and C78 is observed [17.135,136]. On the other hand, C82 and C84 have a sufficiently high mass density (moment of inertia) that their rotational motion is highly suppressed and some intramolecular features can be observed by STM. For C84 on GaAs (110) substrates, a suitable substrate temperature for adsorption is 400 K [17.133], For all fullerenes, thus far studied on GaAs (110), namely C60, C70, C76, C80, C82, and C84, island growth is observed, consistent with a stronger binding between the C„c-C„c fullerenes as compared to the fullerene-substrate binding. With submonolayer amounts of fullerenes deposited on GaAs (110) at 460 K, the molecules diffuse on the surface and nucleate into patches, establishing monolayer-high two-dimensional islands with grain boundaries at substrate steps [17.133], and an approximately close-packed structure is formed to minimize the free energy. While the steps on the substrate nucleate island formation for CM on GaAs (110), the steps are not favored for island formation for larger fullerene molecules. This can in part be understood in terms of the step height on the substrate becoming small in comparison with the C„c diameter as nc increases.

The various fullerenes C60, C70, C76, C80, C82, and C84 on GaAs (110) form similar 4x2 "A-type" adsorption structures (see Fig. 17.21) [17.135,136], but the details of the structure depend on the fullerene dimensions, as shown in

Table 17.4, where, for each fullerene C„c, the measured height of the monolayer is given, along with the nearest-neighbor C„c-C„c distance. Comments on the intramolecular features are also given in Table 17.4 [17.137].

It is expected that the greater availability of higher-mass fullerenes in purified form will stimulate further detailed surface science studies of the structure of monolayer films on various substrates.

17.9.6. Metallofullerenes Adsorbed on Surfaces

Study of the interface interaction between metallofullerenes (see §5.5 and §8.2) and the surface to which they are adsorbed is still at an early stage. One study has already been reported using scanning tunneling microscopy (STM) to probe the adsorbate-surface interaction, and the systems studied were [email protected] and [email protected] on an Si (100) 2x1 surface [17.138]. Similar to the behavior of C60 and other fullerenes on Si surfaces, once the metallofullerenes hit the Si (100) 2x1 surface, they immediately bond to the surface, because the adsorbate-surface bonding is very strong, and thus almost no surface migration of the metallofullerenes occurs. Also, there is no evidence for the nucleation of metallofullerene clusters on the substrate or their segregation at step edges of the substrate. The STM images for the metallofullerenes show approximately spherical structures, indicating that the metal species is contained within the fullerene cage. Since good STM images can be found at a low tip voltage (~ 0.7 eV), it is concluded that the metallofullerenes [email protected] and [email protected] on an Si (100) 2x1 surface are either metallic or have a small band gap [17.138]. Using C60 as a reference with regard to both the density of states and the fullerene diameter (7.1 Â), diameters of 8.8 Â and 9.5 Â were obtained for the metallofullerenes [email protected] and [email protected], respectively [17.138], These larger diameters should be compared with that for the fullerene Cg4, with a calculated diameter of 9.4 Â [17.139] and an experimental value of 8.6 Â [17.126]. The measured diameter for [email protected] is large, suggesting that charge transfer occurs from the endohedral metal atoms to the surrounding carbon shell and perhaps also from the substrate to the fullerene shell.

References

[17.1] J. E. Rowe, P. Rudolf, L. H. Tjeng, R. A. Malic, G. Meigs, C. T. C. J. Chen, and E. W. Plummer. In C. Taliani, G. Ruani, and R. Zamboni (eds.), Proc. of the First Italian Workshop on Fullerenes: Status and Perspectives, vol. 2, p. 133, World Scientific, Singapore (1992).

[17.2] J. H. Weaver. Acc. Chem. Res., 25, 143 (1992).

[17.3] T. Takahashi, S. Suzuki, T. Morikawa, H. Katayama-Yoshida, S. Hasegawa, H. Inokuchi, K. Seki, K. Kikuchi, S. Suzuki, K. Ikemoto, and Y. Achiba. Phys. Rev. Lett., 68, 1232 (1992).

[17.4] J. H. Weaver and D. M. Poirier. In H. Ehrenreich and F. Spaepen (eds.), Solid State Physics, vol. 48, p. 1, New York (1994). Academic Press. Chapter 1.

[17.5] W. E. Pickett. In H. Ehrenreich and F. Spaepen (eds.), Solid State Physics, vol. 48, p. 225, Academic Press, New York (1994).

[17.6] R. Saito (1994). Private communication.

[17.7] J. H. Weaver. J. Phys. Chem. Solids, 53, 1433 (1992).

[17.8] M. B. Jost, N. Troullier, D. M. Poirier, J. L. Martins, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. Phys. Rev. B, 44, 1966 (1991).

[17.9] R. W. Löf, M. A. van Veenendaal, B. Koopmans, H. T. Jonkman, and G. A. Sawatzky. Phys. Rev. Lett., 68, 3924 (1992).

[17.10] R. W. Löf, M. A. van Veenendaal, B. Koopmans, A. Heesseis, H. T. Jonkman, and

G. A. Sawatzky. Int. J. Modern Phys. B, 6, 3915 (1992).

[17.11] G. Gensterbium, J. J. Pireaux, P. A. Thiry, R. Caudano, J. P. Vigneron, P. Lambin, A. A. Lucas, and W. Krätschmer. Phys. Rev. Lett., 67, 2171 (1991).

[17.12] P. A. Briihwiler. Private communication.

[17.13] S. Saito and A. Oshiyama. Phys. Rev. Lett., 66, 2637 (1991).

[17.14] A. Oshiyama, S. Saito, N. Hamada, and Y. Miyamoto. J. Phys. Chem. Solids, 53, 1457 (1992).

[17.15] J. Wu, Z. X. Shen, D. S. Dessau, R. Cao, D. S. Marshall, P. Pianetta, I. Lindau, X. Yang, J. Terry, D. M. King, B. O. Wells, D. Elloway, H. R. Wendt, C. A. Brown,

H. Hunziker, and M. S. de Vries. Physica C, 197, 251 (1992).

[17.16] E. Sohmen, J. Fink, and W. Krätchmer. Z. Phys. B, 86, 87 (1992).

[17.17] S. G. Louie and E. L. Shirley. J. Phys. Chem. Solids, 54, 1767 (1993).

[17.18] G. Gensterbium, J. J. Pireaux, P. A. Thiry, R. Caudano, T. Buslaps, R. L. Johnson, G. L. Lay, V. Aristov, R. Günther, A. Taleb-Ibrahimi, G. Indlekofer, and Y. Petroff. Phys. Rev. B, 48, 14756 (1993).

[17.19] P. J. Benning, C. G. Olson, D. W. Lynch, and J. H. Weaver. Phys. Rev. B, 50, 11239 (1994).

[17.20] G. Gensterbium, L.-M. Yu, J. J. Pireaux, P. A. Thiry, R. Caudano, P. Lambin, A. A. Lucas, W. Krätschmer, and J. E. Fischer. J. Phys. Chem. Solids, 53, 1427 (1992).

[17.21] E. Sohmen and J. Fink. Phys. Rev. B, 47, 14532 (1993).

[17.22] P. J. Benning, D. M. Poirier, T. R. Ohno, Y. Chen, M. B. Jost, F. Stepniak, G. H. Kroll, and J. H. Weaver. Phys. Rev. B, 45, 6899 (1992).

[17.23] J. F. Armbruster, H. A. Romberg, P. Schweiss, P. Adelmann, M. Knupfer, J. Fink, R. H. Michel, J. Rockenberger, F. Hennrich, H. Schreiber, and M. M. Kappes. Z. Phys. B, 95, 469 (1994).

[17.24] S. Hino, K. Matsumoto, S. Hasegawa, K. Iwasaki, K. Yakushi, T. Morikawa, T. Taka-hashi, K. Seki, K. Kikuchi, S. Suzuki, I. Ikemoto, and Y. Achiba. Phys. Rev. B, 48, 8418 (1993).

[17.25] D. M. Poirier, J. H. Weaver, K. Kikuchi, and Y. Achiba. Zeitschrift ßr Physik D: Atoms, Molecules and Clusters, 26, 79 (1993).

[17.26] M. S. Golden, M. Knupfer, J. Fink, J. F. Armbruster, T. R. Cummins, H. A. Romberg, M. Roth, R. Michel, J. Rockenberger, F. Hennrich, H. Schreiber, and M. M. Kappes. In H. Kuzmany, J. Fink, M. Mehring, and S. Roth (eds.), Progress in Fullerene Research: International Winterschool on Electronic Properties of Novel Materials, p. 309 (1994). Kirchberg Winter School, World Scientific, Singapore.

[17.27] S. Hino, K. Matsumoto, S. Hasegawa, K. Kamiya, H. Inokuchi, T. Morikawa, T. Taka-hashi, K. Seki, K. Kikuchi, S. Suzuki, I. Ikemoto, and Y. Achiba. Chem. Phys. Lett., 190, 169 (1992).

[17.28] J. H. Weaver, J. L. Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H. Kroll, N. Troul-lier, R. E. Haufler, and R. E. Smalley. Phys. Rev. Lett., 66, 1741 (1991).

[17.29] C. Enkvist, S. Lunell, B. Sjogren, S. Svensson, P. A. Briihwiler, A. Nilsson, A. J. Maxwell, and N. Märtensson. Phys. Rev. B, 48, 14629 (1993).

[17.30] S. Lunell, C. Enkvist, M. Agback, S. Svensson, and P. A. Briihwiler, Int. J. Quant. Chem., 52, 135 (1994).

[17.31] P. J. Benning, F. Stepniak, D. M. Poirier, J. L. Martins, J. H. Weaver, R. E. Haufler, L. P. F. Chibante, and R. E. Smalley. Phys. Rev. B, 47, 13843 (1993).

[17.32] J. H. Weaver, P. J. Benning, F. Stepniak, and D. M. Poirier. /. Phys. Chem. Solids, 53, 1707 (1992).

[17.33] M. Merkel, M. Knupfer, M. S. Golden, J. Fink, R. Seemann, and R. L. Johnson. Phys. Rev. B, 47, 11470 (1993).

[17.34] J. Fink, E. Sohmen, M. Merkel, A. Masaki, H. Romberg, A. M. Alexander, M. Knupfer, M. S. Golden, P. Adelmann, and B. Renker. In C. Taliani, G. Ru-ani, and R. Zamboni (eds.), Proc. of the First Italian Workshop on Fullerenes: Status and Perspectives, vol. 2, p. 161, World Scientific, Singapore (1992).

[17.35] M. Knupfer, M. Merkel, M. S. Golden, J. Fink, O. Gunnarsson, and V. P. Antropov. Phys. Rev. B, 47, 13944 (1993).

[17.36] C. T. Chen, L. H. Tjeng, P. Rudolf, G. Meigs, J. F. Rowe, J. Chen, J. P. McCauley,

A. B. Smith, A. R. McGhie, W. J. Romanow, and C. Plummer. Nature (London), 352, 603 (1991).

[17.37] M. J. Rosseinsky, D. W. Murphy, R. M. Fleming, R. Tycko, A. P. Ramirez, T. Siegrist, G. Dabbagh, and S. E. Barrett. Nature (London), 356, 416 (1992).

[17.38] C. Gu, F. Stepniak, D. M. Poirier, M. B. Jost, P. J. Benning, Y. Chen, T. R. Ohno, J. L. Martins, J. H. Weaver, J. Fure, and R. E. Smalley. Phys. Rev. B, 45, 6348 (1992).

[17.39] P. J. Benning, F. Stepniak, and J. H. Weaver. Phys. Rev. B, 48, 9086 (1993).

[17.40] E. Sohmen, J. Fink, and W. Krätschmer. Eumphys. Lett., 17, 51 (1992).

[17.41] R. C. Haddon, L. E. Brus, and K. Raghavachari. Chem. Phys. Lett., 125, 459 (1986).

[17.42] J. L. Martins, N. Troullier, and J. H. Weaver. Chem. Phys. Lett., 180, 457 (1991).

[17.43] Q. M. Zhang, J. Y. Yi, and J. Bernholc. Phys. Rev. Lett., 66, 2633 (1991).

[17.44] B. P. Feuston, W. Andreoni, M. Parrinello, and E. Clementi. Phys. Rev. B, 44, 4056 (1991).

[17.45] P. A. Briihwiler, A. J. Maxwell, A. Nilsson, N. Märtensson, and O. Gunnarsson. Phys. Rev. B, 48, 18296 (1993).

[17.46] M. Knupfer, D. M. Poirier, and J. H. Weaver. Phys. Rev. B, 49, 8464 (1994).

[17.47] T. Takahashi, T. Morikawa, S. Hasegawa, K. Kamiya, H. Fujimoto, S. Hino, K. Seki, H. Katayama-Yoshida, H. Inokuchi, K. Kikuchi, S. Suzuki, K. Ikemoto, and Y. Achiba. Physica C, 190, 205 (1992).

[17.48] Y. Chen, D. M. Poirier, M. B. Jost, C. Gu, T. R. Ohno, J. L. Martins, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. Phys. Rev. B, 46, 7961 (1992).

[17.49] M. Knupfer, F. Stepniak, and J. H. Weaver. Phys. Rev. B, 49, 7620 (1994).

[17.50] B. Chase, N. Herron, and E. Holler. J. Phys. Chem., 96, 4262 (1992).

[17.51] J. E. Rowe, P. Rudolf, L. H. Tjeng, R. A. Malic, G. Meigs, C. T. Chen, J. Chen, and E. W. Plummer. Int. J. Mod. Phys., B6, 3909 (1992).

[17.52] A. J. Maxwell, P. A. Briihwiler, A. Nilsson, N. Märtensson, and P. Rudolf. Phys. Rev.

[17.53] G. K. Wertheim and D. N. E. Buchanan. Solid State Commun., 88, 97 (1993).

[17.54] A. Sellidj and B. E. Koel. J. Phys. Chem., 97, 10076 (1993).

[17.55] S. Modesti, S. Cerasari, and P. Rudolf. Phys. Rev. Lett., 71, 2469 (1993).

A. Lucas, G. Gensterblum, J. J. Pireaux, P. A. Thiry, R. Caudano, J. P. Vigneron, and P. Lambin. Phys. Rev. B, 45, 13694 (1992).

M. B. J. Meinders. L. H. Tjeng and G. A. Sawatzky, Phys. Rev. Lett., 73, 2937 (1994). Comment on Ref. 17.79.

S. Krummacher, M. Biermann, M. Neeb, A. Liebsch, and W. Eberhardt. Phys. Rev.

M. Biermann, M. Neeb, F. P. Johnson, and S. Krummacher. In K. M. Kadish and R. S. Ruoff (eds.), Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials: Electrochemical Society Symposia Proceedings, San Francisco, May 1994, vol. 94-24, p. 952, Electrochemical Society, Pennington, N.J. (1994).

B. Wastberg, S. Lunell, C. Enkvist, P. A. Briihwiler, A. J. Maxwell, and N. MSrtensson. Phys. Rev. B, 50, 13031 (1994).

V. I. Rubtsov and Y. M. Shul'ga. JETP, 76, 1026 (1993).

V. I. Rubtsov, Y. M. Shul'ga, A. P. Moravsky, and A. S. Lobach. Synthetic Metals, 56, 2961 (1993).

Y. M. Shul'ga, V. I. Rubtsov, A. S. Lobach, N. G. Spitsyna, and E. B. Yagubskii. Phys. Solid State, 36, 987 (1994).

P. L. Hansen, P. J. Fallon, and W. Kraiitschmer. Chem. Phys. Lett., 181, 367 (1991). A. A. Lucas. J. Phys. Chem. Solids, 53, 1415 (1992).

G. Gensterblum, J. J. Pireaux, P. A. Thiry, R. Caudano, P. Lambin, and A. A. Lucas. Journal of Electron Spectroscopy and Related Phenomena, V64-5, 64/65, 835 (1993). R. Kuzuo, M. Terauchi, M. Tanaka, Y. Saito and H. Shinohara. Phys. Rev. B, 49, 5054 (1994).

J. F. Armbruster, M. Roth, H. A. Romberg, M. Sing, M. Schmitt, M. S. Golden, P. Schweiss, P. Adelmann, J. Fink, R. H. Michel, J. Rockenberger, F. Hennrich, and M. M. Kappes. Phys. Rev. B, 51, 4933 (1995).

Y.-N. Xu, M.-Z. Huang, and W. Y. Ching. Phys. Rev. B, 44, 13171 (1991).

A. V. Hamza and M. Balooch. Chem. Phys. Lett., 201, 404 (1993).

M. Balooch and A. V. Hamza. Appl. Phys. Lett., 63, 150 (1993).

A. V. Hamza, M. Balooch, and M. Moalem. Surface Science, 317, LI 129 (1994).

R. Meilunas, R. P. H. Chang, S. Z. Lu, and M. M. Kappes. Appl. Phys. Lett., 59, 3461

R. Meilunas and R. P. H. Chang. J. Mater. Res., 9, 61 (1994).

A. V. Hamza, J. Dykes, W. D. Mosley, L. Dinh, and M. Balooch. Surface Science, 318, 368 (1994).

D. E. Ramaker, N. H. Turner, and J. Milliken. J. Phys. Chem., 96, 7627 (1992). W. M. Tong, D. A. A. Ohlberg, H. K. You, R. S. Williams, S. J. Anz, M. M. Alvares, R. L. Whetten, Y. Rubin, and F. Diederich. J. Phys. Chem., 95, 4709 (1991). P. A. Briihwiler, A. J. Maxwell, P. Rudolf, C. D. Gutleben, B. Wastberg, and N. M&rtensson. Phys. Rev. Lett., 71, 3721 (1993).

P. A. Briihwiler, A. J. Maxwell, P. Rudolf, and N. Mlrtensson, Phys. Rev. Lett., 73, 2938 (1994). Reply to Ref. 17.57.

J. Resh, D. Sarkar, J. Kulik, J. Brueck, A. Ignatiev, and N. J. Halas. Surface Science, 316, L1061 (1994).

Y. B. Zhao, D. M. Poirier, R. J. Pechman, and J. H. Weaver. Appl. Phys. Lett., 64, 577 (1994).

Z. Zhang, C.-C. Chen, S. P. Kelty, H. Dai, and C. M. Lieber. Nature (London), 353, 333 (1991).

Z. Zhang, C. C. Chen, and C. M. Lieber. Science, 254, 1619 (1991).

C. H. Oik and J. P. Heremans. J. Mater. Res., 9, 259 (1994).

[17.85] M. Ge and K. Sattler. Science, 260, 515 (1993).

[17.86] T. Hashizume, K. Motai, X. D. Wang, H. Shinohara, Y. Saito, Y. Maruyama, K. Ohno, Y. Kawazoe, Y. Nishina, H. W. Pickering, Y. Kuk, and T. Sakura. Phys. Rev. Lett., 71, 2959 (1993).

[17.87] E. I. Altman and R. J. Colton. Surface Science, 295, 13 (1993).

[17.88] E. I. Altman and R. J. Colton. Surface Science, 279, 49 (1992).

[17.89] Y. Kuk, D. K. Kim, Y. D. Suh, K. H. Park, H. P. Noh, S. J. Oh, and K. S. Kim. Phys. Rev. Lett., 70, 1948 (1993).

[17.90] Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. Phys. Rev. B, 45, 13837 (1992).

[17.91] Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. Science, 253, 429 (1991).

[17.92] Y. Z. Li, J. C. Patrin, M. Chander, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. Science, 252, 547 (1991).

[17.93] T. R. Ohno, Y. Chen, S. E. Harvey, G. H. Kroll, J. H. Weaver, R. H. Haufler, and R. E. Smalley. Phys. Rev. B, 44, 13747 (1991).

[17.94] A. V. Hamza and M. Balooch. Chem. Phys. Lett., 198, 603 (1992).

[17.95] M. Moalem, M. Balooch, A. V. Hamza, W. J. Siekhaus, and D. R. Olander. J. Chem. Phys., 99, 4855 (1993).

[17.96] E. I. Altmann and R. J. Colton. Surface Science, 295, 13 (1993).

[17.97] M. Balooch and A. V. Hamza. Unpublished. Private communication.

[17.98] X. D. Wang, T. Hashizume, H. Sinohara, Y. Saito, Y. Nishina, and T. Sakurai. Jpn. J. Appl. Phys., 31, L880 (1992).

[17.99] H. Xu, D. M. Chen, and W. N. Creager. Phys. Rev. Lett., 70, 1850 (1993).

[17.100] P. Dietz, P. Hansma, K. Fostiropoulos, and W. Kratschmer. Appl. Phys. Part A. Solids and Surfaces, 56, 207 (1993).

[17.101] J. Fujita, S. Kuroshima, T. Satoh, J. S. Tsai, and T. W. Ebbesen. Appl. Phys. Lett., 63, 1008 (1993).

[17.102] T. Thundat, R. J. Warmack, D. Ding, and R. N. Compton. Appl. Phys. Lett., 63, 891 (1993).

[17.103] P. J. Blau and C. E. Haberlin. Thin Solid Films, 219, 129 (1992).

[17.104] J. Ruan and B. Bhushan. J. Mater. Res., 8, 3019 (1993).

[17.105] A. Tokmakoff, D. R. Haynes, and S. M. George. Chem. Phys. Lett., 186, 450 (1991).

[17.106] J. Abrefah, D. R. Olander, M. Balooch, and W. J. Siekhaus. Appl. Phys. Lett., 60, 1313 (1992).

[17.107] R. E. Haufler, J. J. Conceicao, L. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O'Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Hauge, J. L. Margrave, L. J. Wilson, R. F. Curl, and R. E. Smalley. J. Phys. Chem.,

[17.108] C. Pan, M. P. Sampson, Y. Chai, R. H. Hauge, and J. L. Margrave. J. Phys. Chem.,

[17.109] G. Gensterblum, K. Hevesi, B. Y. Han, L. M. Yu, J. J. Pireaux, P. A. Thiry, D. Bernaerts, S. Amelinckx, G. V. Tendeloo, G. Bendele, T. Buslaps, R. L. Johnson, M. Foss, R. Feidenhans'l, and G. LeLay. Phys. Rev. B, 50, 11981 (1994).

[17.110] M. W. Ruckman, B. Xia, and S. L. Qui. Phys. Rev. B, 48, 15457 (1993).

[17.111] P. Rudolf and G. Gensterblum. Phys. Rev. B, 50, 12215 (1994).

[17.112] L. Q. Jiang and B. E. Koel. Phys. Rev. Lett., 12, 140 (1994).

[17.113] L. Q. Jiang and B. E. Koel. Chem. Phys. Lett., 223, 69 (1994).

[17.114] P. Rudolf (1995). Private communication.

[17.115] R. L. Garrell, T. M. Herns, C. A. Szafranski, F. Diederich, R. Ettl, and R. L. Whet-ten. J. Am. Chem. Soc., 113, 6302 (1991).

[17.116] S. J. Chase, W. S. Bacsa, M. G. Mitch, L. J. Pilione, and J. S. Lannin. Phys. Rev. B, 46, 7873 (1992).

[17.117] K. L. Akers, L. M. Cousins, and M. Moskovits. Chem. Phys. Lett., 190, 614 (1992).

[17.118] Y. Zhang, G. Edens, and M. J. Weaver. J. Am. Chem. Soc., 113, 9395 (1991).

[17.119] T. Hashizume, X. D. Wang, Y. Nishina, H. Shinohara, Y. Saito, Y. Kuk, and T. Saku-rai. Jpn. J. Appl. Phys., 31, L880 (1992).

[17.120] D. L. Lichtenberger, K. W. Nebesny, C. D. Ray, D. R. Huffman, and L. D. Lamb. Chem. Phys. Lett., 176, 203 (1991).

[17.121] D. L. Lichtenberger, M. E. Jatcko, K. W. Nebesny, C. D. Ray, D. R. Huffman, and L. D. Lamb. In R. S. Averback, J. Bernholc, and D. L. Nelson (eds.), Clusters and Cluster-Assembled Materials, MRS Symposia Proceedings, Boston, vol. 206, p. 673. Materials Research Society Press, Pittsburgh, PA (1991).

[17.122] A. Fartash. Appl. Phys. Lett., 64, 1877 (1994).

[17.123] Z. Y. Rong and L. Rokhinson. Phys. Rev. B, 49, 7749 (1994).

[17.124] K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi. J. Vac. Sci. Technol. A, 3, 1502 (1985).

[17.125] R. J. Hamers, R. M. Tromp, and J. E. Demuth. Phys. Rev. Lett., 56, 1972 (1986).

[17.126] X.-D. Wang, T. Hashizume, H. Shinohara, Y. Saito, Y. Nishina, and T. Sakurai. Phys. Rev. B, 47, 15923 (1993).

[17.127] X.-D. Wang, T. Hashizume, Q. Xue, H. Shinohara, Y. Saito, Y. Nishina, and T. Sakurai. J. Appl. Phys., 32, L147 (1993).

[17.128] Y. Kawazoe, H. Mamiyama, Y. Maruyama, and K. Ohno. Jpn. J. Appl. Phys., 32, 1433 (1993).

[17.129] G. Gensterblum, L. M. Yu, J. J. Pireaux, P. A. Thiry, R. Caudano, J. M. Themlin, S. Bouzidi, F. Coletti, and J. M. Debever. Appl. Phys. A, 56, 175 (1993).

[17.130] L. Wragg, J. E. Chamberlain, H. W. White, W. Kratschmer, and D. R. Hoffman. Nature (London), 348, 623 (1990).

[17.131] L. D. Lamb, D. R. Huffman, R. K. Workman, S. Howells, T. Chen, D. Sarid, and D. F. Ziolo. Science, 255, 1413 (1992).

[17.132] X. D. Wang, Q. Xue, T. Hashizume, H. Shinohara, Y. Nishina, and T. Sakurai. Phys. Rev. B, 49, 7754 (1994).

[17.133] Y. Z. Li, J. C. Patrin, M. Chander, J. H. Weaver, K. Kikuchi, and Y. Achiba. Phys. Rev. B, 47, 10867 (1993).

[17.134] D. E. Manolopoulos and P. W. Fowler. J. Phys. Chem., 96, 7603 (1992).

[17.135] Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. Science, 252, 547 (1992).

[17.136] Y. Z. Li, M. Chander, I. C. Patrin, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. Science, 253, 429 (1992).

[17.137] K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, H. Shiramaru, Y. Miyake, K. Saito, I. Ikemoto, M. Kainosho, and Y. Achiba. Nature (London), 357, 142

[17.138] X.-D. Wang, T. Hashizume, Q. Xue, H. Shinohara, Y. Saito, Y. Nishina, and T. Sakurai. Jpn. J. Appl. Phys., B32, L866 (1993).

[17.139] S. Saito, S. I. Sawada, N. Hamada, and A. Oshiyama. Jpn. J. Appl. Phys., 32, 1438

Was this article helpful?

0 0

Post a comment