Info

Fig. 2.25. Photoionization time of flight mass spectrometry measurements for: (a) the single and double ionization spectra of a single Ba, overlayer on C60 denoted by CMBa+ and C6oBa2+. (b) One, two, three, and four layers of metallic Ca, overlaying a Cm molecule'. The spectra show singly ionized C^Ca^ with peaks at * = 32,104,236 and * = 448 (see text) [2.144], around a fullerene. For example, an Li atom has been proposed to reside over the centers of each pentagonal face of C60 [2.145,146] to produce

A remarkable multilayer metal structure can also be grown over the C60 surface using small alkaline earth atoms such as Ca, Sr, and Ba. This is accomplished when the temperature and pressure conditions are appropriately regulated to favor C60-M bonding or to favor M-M bonding. Pho-toionization time-of-flight mass spectrometry [see Fig. 2.25(a)] measurements show well-defined peaks in the singly charged and doubly charged spectra, corresponding to Ba32C60, consistent with placing one Ba over each of the 12 pentagonal faces and over each of the 20 hexagonal faces, as shown schematically in Fig. 2.26(a). The Ba atoms have just the right size (radius is 1.98 Â) to cover the C60 shell [2.144], In support of this model is the observation of metal-coated Ba37C70 clusters based on C,7Q, consistent with five additional carbon hexagons in C70 relative to C60. Even more remarkable is the formation of ordered structures with multiple Ca shells, as seen in the mass spectra of Fig. 2.25(b), where well-resolved peaks for CarC

60 are observed for x — 32,104,236, and 448, corresponding to 1, 2, 3, and 4 oriented layers of Ca atoms emanating from the C60 core, and

Fig. 2.26. Proposed arrangements in multilayer metal-covered fullerenes of the atoms M = Ca in the first four layers surrounding a Cal molecule. The M atoms over the icosahedral vertices, i.e., along the fivefold axes, of Cgg are shaded. The number of metal layers is equal to K - 2, from Eq. 2.2. [2.144],

Fig. 2.26. Proposed arrangements in multilayer metal-covered fullerenes of the atoms M = Ca in the first four layers surrounding a Cal molecule. The M atoms over the icosahedral vertices, i.e., along the fivefold axes, of Cgg are shaded. The number of metal layers is equal to K - 2, from Eq. 2.2. [2.144], shown schematically in Fig. 2.26. In this figure the black balls denote the Ca atoms lying over the pentagonal faces of C50, and for the M32C60 cluster, each white ball is over a hexagonal face. As the next layer is deposited, three white balls are closely packed relative to the lower layer, giving rise to 60 additional white balls and 12 additional black balls over the pentagonal faces and corresponding to the M104C60 stoichiometry (32 + 12 + 3 x 20 = 104). Likewise, the buildup of the white balls in the third and fourth layers is 6 and 10 per hexagonal face, respectively, thereby accounting for the mass spectroscopy peaks at M236C60 and M448C60, respectively. A formula giving the number N(K) of metal atoms for K — 2 complete layers around the C60 molecule is

The layers can be described using the notation adopted for endohedral metallo-fullerenes, with [email protected]@[email protected]@M212 describing the five concentric shells of the metal-coated cluster (see §8.2).

References

[2.1] F. P. Bundy. J. Geophys. Res., 85, 6930 (1980).

[2.2] F. P. Bundy. In S. Minomura (ed.), Solid State Physics under Pressure: Recent Advance with Anvil Devices, p. 1. D. Reidel, Dordrecht (1985).

[2.3] B. T. Kelly. Physics of Graphite. Applied Science, London (1981).

[2.4] R. W. G. Wyckoff. In Crystal Structures, vol. 1. Interscience, New York (1964).

[2.5] C. Kittel. Introduction to Solid State Physics. John Wiley and Sons, New York, 6th ed. (1986).

[2.6] J. Steinbeck, G. Braunstein, M. S. Dresselhaus, T. Venkatesan, and D. C. Jacobson. J. Appl. Phys., 58, 4374 (1985).

[2.7] M. S. Dresselhaus and J. Steinbeck. Tanso, 132, 44 (1988). Journal of the Japanese Carbon Society.

[2.8] R. C. Weast. CRC Handbook of Chemistry and Physics. CRC Press, Inc., West Palm Beach, FL (1978). 59th edition.

[2.9] J. Robertson. Advances in Physics, 35, 317 (1986).

[2.10] J. C. Charlier. Carbon Nanotubes and Fullerenes. Ph.D. thesis, Catholic University of Louvain (1994). Department of Physics of Materials.

[2.11] J. W. McClure. In D. L. Carter and R. T. Bate (eds.), Proceedings of the International Conf. on Semimetals and Narrow Gap Semiconductors, p. 127. Pergamon Press, New York (1971).

[2.12] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg. Graphite Fibers and Filaments, vol. 5 of Springer Series in Materials Science. SpringerVerlag, Berlin (1988).

[2.13] J. Maire and J. Mering. In Proceedings of the First Conference of the Society of Chemical and Industrial Conference on Carbon and Graphite, p. 204. London, (1958).

[2.15] S. B. Austerman. In P. L. Walker, Jr. (ed.), Chemistry and Physics of Carbon, vol. 7, p. 137. Marcel Dekker, New York (1968).

A. W. Moore. In P. L. Walker, Jr. and P. A. Thrower (eds.), Chemistry and Physics of Carbon, vol. 11, p. 69. Marcel Dekker, Inc., New York (1973).

A. W. Moore. In P. L. Walker, Jr. and P. A. Thrower (eds.), Chemistry and Physics of

Carbon, vol. 17, p. 233. Marcel Dekker, Inc., New York (1981).

K. Matsubara, T. Tsuzuku, and M. Murakami. Extended Abstracts of the 20th Biennial

Conference on Carbon, p. 556 (1991). Santa Barbara, CA.

H. Yasujima, M. Murakami, and S. Yoshimura. Appl. Phys. Lett., 49, 499 (1986).

Y. Hishiyama, S. Yasuda, and M. Inagaki. J. Mat. Sci., 23, 3722 (1988).

M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino, and K. Morita. Carbon, 27,

Y. Hishiyama, Y. Kaburagi, and M. Inagaki. In P. A. Thrower (ed.), Chemistry and Physics of Carbon, vol. 23, p. 1. Marcel Dekker, New York (1991). R. Bacon. J. Appl. Phys., 31, 283 (1960).

M. Endo, A. Katoh, T. Sugiura, and M. Shiraishi. In Extended Abstracts of the 18th Biennial Conference on Carbon, p. 151 (1987). Worcester Polytechnic Institute. M. Endo, T. Momose, H. Touhara, and N. Watanabe. /. Power Sources, 20, 99 (1987). M. Endo. CHEMTECH, 18, 568 (1988).

G. M. Jenkins and K. Kawamura. In Polymeric Carbons-Carbon Fibre, Glass and Char. Cambridge University Press (1976).

F. Rousseaux and D. Tchoubar. Carbon, 15, 55, 63 (1977).

A. Oberlin. In P. A. Thrower (ed.), Chemistry and Physics of Carbon, vol. 22, pp. 1-14. Marcel Dekker, New York (1989).

Y. Shiraishi. In Introduction to Carbon Materials, pp. 29-40. Carbon Society of Japan, Tokyo (1984). Kaitei Tansozairyo Nyumon (in Japanese).

Y. Kaburagi, S. Yasuda, and Y. Hishiyama. Extended Abstracts of the 18th Biennial Conference on Carbon, p. 476 (1987).

A. Yoshida, Y. Kaburagi, and Y. Hishiyama. Carbon, 29, 1107 (1991).

J. Lahaye and G. Prado. In P. L. Walker, Jr (ed.), Chemistry and Physics of Carbon, vol. 16, p. 167. Marcel Dekker, New York (1978).

J. B. Donnet, R. C. Bansal, and M. J. Wang. Carbon Black. Marcel Dekker, New York (1993).

T. P. Yampolskii, Y. V. Maximov, N. P. Novikov, and K. P. Lavrovskii. Khim. Vys. Energ., 4, 283 (1970).

J. T. D. Maleissye, F. Lempereur, and C. Marsal. C. R. Acad. Sci., Paris, Ser., 275, 1153 (1972).

X.-X. Bi, M. Jagtoyen, F. J. Derbyshire, P. C. Eklund, M. Endo, K. D. Chowdhury, and M. S. Dresselhaus. J. Mat. Res., 10 (1995). (in press).

B. E. Warren. Phys. Rev., 59, 693 (1941). R. E. Franklin. Acta Cryst., 3, 107 (1950). R. E. Franklin. Acta Cryst., 4, 253 (1951).

R. D. Heidenreich, W. M. Hess, and L. L. Ban. J. Appl. Crystallogr., 1, 1 (1968). P. A. Marsh, A. Voet, T. J. Mullens, and L. D. Price. Carbon, 9, 797 (1971). Y. Schwob. In J. Philip, L. Walker, and P. A. Thrower (eds.), Physics and Chemistry of Carbon, vol. 17, p. 109. Marcel Dekker, Inc., New York, NY (1979). X. Bourrat. Carbon, 31, 287 (1993).

H. P. Boehm. Z. Anorg. U. Allgem. Chem., 297, 315 (1958).

[2.49] V. I. Kasatotchkin, V. M. Loukianovitch, N. H. Popov, and K. V. Tchmoutov. Chem. Phys., 37, 822 (1960).

[2.50] L. L. Ban and W. M. Hess. Extended Abstracts of the 10th Biennial Conference on Carbon, p. 159 (1971). Defense Ceramic Information Center, Columbus, OH.

[2.51] L. L. Ban. The Chem. Soc. London, 1, 54 (1972).

[2.52] F. Tuinstra and J. L. Koenig. /. Chem. Phys., 53, 1126 (1970).

[2.53] D. S. Knight and W. B. White. J. Mater. Res., 4, 385 (1989).

[2.54] M. Inagaki and T. Noda. Bull. Chem. Soc. Japan, 35, 1652 (1962).

[2.55] J. S. Speck. Structural correlations in graphite and its layer compounds. Ph.D. thesis, Massachusetts Institute of Technology (1989). Department of Materials Science and Engineering.

[2.56] E. A. Kmetko. In S. Mrozowski and L. W. Phillips (eds.), Proceedings of the First and Second Conference on Carbon, p. 21. Waverly Press, Buffalo, NY (1956).

[2.57] A. W. P. Fung, Z. H. Wang, K. Lu, M. S. Dresselhaus, and R. W. Pekala. J. Mat. Res., 8, 1875 (1993).

[2.58] X. X. Bi, P. C. Eklund, J. M. Stencel, D. N. Taulbee, H. F. Ni, F. J. Derbyshire, and M. Endo. Extended Abstracts of the 20th Biennial Conference on Carbon, p. 518 (1991). Santa Barbara, CA.

[2.59] X. X. Bi, B. Ganguly, G. P. Huffman, F. E. Huggins, M. Endo, and P. C. Eklund. J. Mater. Res., 8, 1666 (1993).

[2.60] S. S. Abadzev, P. A. Tesner, and U. V. Smevchan. Gazov, Prom., 14, 36 (1969).

[2.61] B. N. Altshuler and P. A. Tesner. Gazov, Prom., 6, 41 (1969).

[2.62] R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, and S. Subramoney. Science, 259, 346 (1993).

[2.63] S. Iijima and T Ichihashi. Nature (London), 363, 603 (1993).

[2.64] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers. Nature (London), 363, 605 (1993).

[2.65] C. H. Kiang, W. A. Goddard III, R. Beyers, and D. S. Bethune. Science (1994).

[2.66] S. Seraphin and D. Zhou. Appl. Phys. Lett., 64, 2087 (1994).

[2.67] X. X. Bi, W. T Lee, and P. C. Eklund. Amer. Chem. Soc. (Fuel Chemistry Division), 38, 444 (1993). Denver, CO.

[2.68] Y. Saito, T. Yoshikawa, M. Okuda, M. Ohkohchi, Y. Ando, A. Kasuya, and Y. Nishina. Chem. Phys. Lett., 209, 72 (1994).

[2.69] M. Tomita, Y. Saito, and T Hayashi. Jpn. J. Appl. Phys., 32, L280 (1993).

[2.70] R. J. Lagow, J. J. Kampa, H. C. Wei, S. L. Battle, J. W. Genge, D. A. Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw, and E. Munson. Science, 267, 362 (1995).

[2.71] V. I. Kasatochkin, A. M. Sladkov, Y. P. Kudryavtsev, N. M. Popov, and V. V. Korshak. Dokl. Chem., 177, 1031 (1967).

[2.72] V. I. Kasatochkin, V. V. Korshak, Y. P. Kudryavtsev, A. M. Sladkov, and I. E. Steren-berg. Carbon, 11, 70 (1973).

[2.73] A. G. Whittaker and P. L. Kintner. Carbon, 23, 255 (1985).

[2.74] A. G. Whittaker and P. L. Kintner. Science, 165, 589 (1969).

[2.76] A. G. Whittaker, E. J. Watts, R. S. Lewis, and E. Anders. Science, 209, 1512 (1980).

[2.77] A. E. Gorsey and G. Donnary. Science, 363 (1968).

[2.78] V. I. Kasatochkin, M. E. Kasakov, V. A. Savransky, A. P. Nabatnikov, and N. P. Radi-mov. Dokl. Akad. Nauk, USSR, 201, 1104 (1971).

[2.79] R. B. Heimann, J. Kleiman, and N. M. Slansky. Nature (London), 306, 164 (1983).

[2.80] A. G. Whittaker and G. M. Wolten. Science, 178, 54 (1972).

[2.81] A. G. Whittaker, G. Donnay, and K. Lonsdale. Carnegie Institution Year Book, 69, 311 (1971).

[2.82] S. Tanuma and A. Palnichenko. /. Mater. Res., 10, 1120 (1995).

[2.83] J. J. Hauser. Solid State Commun., 17, 1577 (1975).

[2.84] M. S. Dresselhaus and R. Kalish. Ion Implantation in Diamond, Graphite and Related Materials. Springer-Verlag; Springer Series in Materials Science, Berlin (1992). Volume 22.

[2.85] B. Dischler and G. Brandt. Industrial Diamond Review, 3, 131 (1985).

[2.86] J. J. Hauser, J. R. Patel, and J. N. Rogers. Appl. Phys. Lett., 30, 129 (1977).

[2.87] J. Fink, T. Muller-Heinzerling, J. Pfluger, A. Bubenzer, P. KoidI, and G. Crecelius. Solid State Commun., 47, 687 (1983).

[2.89] N. Sawides. J. Appl. Phys., 59, 4133 (1986).

[2.90] J. Zelez. J. Vac. Sei. Technol., 1, 306 (1983).

[2.91] M. S. Dresselhaus, A. W. P. Fung, A. M. Rao, S. L. di Vittorio, K. Kuriyama, G. Dresselhaus, and M. Endo. Carbon, 30, 1065 (1992).

[2.92] A. W. P. Fung, K. Kuriyama, A. M. Rao, M. S. Dresselhaus, G. Dresselhaus, and M. Endo. J. Mat. Sei., 8, 489 (1993).

[2.93] M. Inagaki, K. Muramatsu, Y. Maeda, and K. Maekawa. Synth. Met., 8, 335 (1983).

[2.94] A. Thorny and X. Duval. J. de Chimie Phys., 66, 1966 (1969).

[2.95] W. H. Martin and J. E. Brocklehurst. Carbon, 1, 133 (1964).

[2.96] R. W. Pekala and C. T. Alviso. In C. L. Renschier, J. J. Pouch, and D. M. Cox (eds.), Novel Forms of Carbon, vol. 270, pp. 3-14. Materials Research Society, Pittsburgh, PA (1992).

[2.97] J. Steinbeck, G. Dresselhaus, and M. S. Dresselhaus. International Journal of Ther-mophysics, 11, 789 (1990).

[2.98] T. Venkatesan, J. Steinbeck, G. Braunstein, M. S. Dresselhaus, G. Dresselhaus, D. C. Jacobson, and B. S. Elman. In H. Kurz, G. L. Olson, and J. M. Poate (eds.), Beam-Solid Interactions and Phase Transformations, MRS Symposia Proceedings, Boston, vol. 51, p. 251, Pittsburgh, PA (1986). Materials Research Society.

[2.99] J. Heremans, C. H. Olk, G. L. Eesley, J. Steinbeck, and G. Dresselhaus. Phys. Rev. Lett., 60, 452 (1988).

[2.100] J. S. Speck, J. Steinbeck, G. Braunstein, M. S. Dresselhaus, and T. Venkatesan. In H. Kurz, G. L. Olson, and J. M. Poate (eds.), Beam-Solid Interactions and Phase Transformations, MRS Symposia Proceedings, Boston, vol. 51, p. 263, Pittsburgh, PA (1986). Materials Research Society Press.

[2.101] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley. Nature (London), 318, 162 (1985).

[2.102] M. S. Dresselhaus and G. Dresselhaus. Advances in Phys., 30, 139 (1981).

[2.103] In H. Zabel and S. A. Solin (eds.), Graphite Intercalation Compounds I: Structure and Dynamics, Springer Series in Materials Science, vol. 14. Springer-Verlag, Berlin (1990).

[2.104] W. Rüdorff and E. Shultze. Z. Anorg. allg. Chem., 277, 156 (1954).

[2.105] F. P. Bundy and J. S. Kasper. J. Chem. Phys., 46, 3437 (1967).

[2.106] D. Morelli. In P. A. Thrower (ed.), Chemistry and Physics of Carbon, vol. 24, p. 45. Marcel Dekker, NY (1994).

[2.107] R. C. DeVries. Ann. Rev. Mater. Sei., 17, 161 (1987).

[2.108] J. C. Angus and C. C. Hayman. Science, 241, 877 (1988).

[2.109] J. C. Angus and C. C. Hayman. Science, 241, 913 (1988).

[2.110] W. A. Yarbrough and R. Messier. Science, 247, 688 (1990).

[2.111] B. V. Spitsyn, L. L. Bouitov, and B. V. Derjaguin. J. Cryst. Growth, 52, 219 (1981).

[2.112] S. Prawer, A. Hoffman, and R. Kalish. Appl. Phys. Lett., 57, 2187 (1990).

[2.113] D. T. Morelli, T. M. Hartnett, and C. J. Robinson. Appl. Phys. Lett., 59, 2112 (1991).

[2.114] A. Feldman, H. P. R. Frederikse, and X. T. Ying. Proc. SPIE. Int. Soc. Opt. Eng., 1146, 78 (1990).

[2.115] J. E. Graebner, S. Jin, G. W. Kammlott, J. A. Herb, and C. F. Gardinier. Nature (London), 359, 401 (1992).

[2.116] In P. Koidl and P. Oelhafen (eds.), Amorphous Hydrogenated Carbon Films. European Materials Research Society (1987). Les Editions de Physique, France, Vol. XVII.

[2.117] J. T. A. Pollock and L. S. Wichinski. In J. S. Hanker and B. L. Giammara (eds.), Biomedical Materials and Devices, vol. 110. Materials Research Society, Pittsburgh, PA (1987).

[2.118] D. R. McKenzie, R. C. McPhedram, N. Sawides, and D. J. H. Cockayne. Thin Solid Films, 108, 247 (1983).

[2.119] J. Robertson and E. P. O'Rielly. Phys. Rev. B, 35, 2946 (1987).

[2.120] R. Kalish and E. Adel. In J. J. Pouch and S. A. Alterowitz (eds.), Properties and Preparation of Amorphous Carbon Films, vol. 52-53, p. 427. Trans. Tech. Pub., Switzerland (1990). Materials Science Forum.

[2.121] R. C. Fort, Jr. Adamantane: the Chemistry of Diamond Molecules. Marcel-Dekker, New York (1976).

[2.122] S. Landa, V. Machacek, and J. Mzourek. Chemicke Listy, 27, 415 (1933).

[2.123] G. A. Olah. In G. A. Olah and P. von R. Schleyer (eds.), Cage Hydrocarbons, John Wiley & Sons, New York (1990).

[2.124] P. von R. Schleyer. In G. A. Olah and P. von R. Schleyer (eds.), Cage Hydrocarbons, J. Wiley & Sons, New York (1990). edition 1990.

[2.125] R. E. Haufler, J. J. Conceicao, L. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O'Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Hauge, J. L. Margrave, L. J. Wilson, R. F. Curl, and R. E. Smalley. J. Phys. Chem., 94, 8634 (1990).

[2.126] R. J. Ternansky, D. E. Balogh, and L. A. Paquette. J. Am. Chem. Soc., 104, 4503 (1982).

[2.127] A. D. Schlüter, M. Loffler, and V. Enkelmann. Nature (London), 368, 831 (1994).

[2.128] B. C. Guo, K. P. Kerns, and A. W. Castleman, Jr. Science, 255, 1411 (1992).

[2.129] B. C. Guo, S. Wei, J. Purnell, S. Buzza, and A. W. Castleman, Jr. Science, 256, 515 (1992).

[2.130] B. C. Guo, K. P. Kerns, and A. W. Castleman, Jr. J. Am. Chem. Soc., 115, 7415 (1993).

[2.131] S. Wei, B. C. Gao, J. Purnell, S. Buzza, and A. W. Castleman, Jr. J. Phys. Chem., 96, 4166 (1992).

[2.132] S. Wei and A. W. Castleman, Jr. Chem. Phys. Lett., 227, 305 (1994).

[2.133] M. A. Duncan (private communication).

[2.134] J. S. Pilgrim and M. A. Duncan. J. Am. Chem. Soc., 115, 495 (1993).

[2.135] J. S. Pilgrim and M. A. Duncan. J. Am. Chem. Soc., 115, 6958 (1993).

[2.136] J. S. Pilgrim, E. L. Stewart, and M. A. Duncan. J. Am. Chem. Soc., 115, 9724 (1993).

[2.137] J. S. Pilgrim and M. A. Duncan. Intl. J. Mass Spectr. Ion Processes, 138, 283 (1994).

[2.138] B. V. Reddy, S. N. Khanna, and P. Jena. Science, 258, 1640 (1992).

[2.139] R. W. Grimes and J. D. Gale. J. Chem. Soc. them. Commun., 1992, 1222 (1992).

[2.140] M. Methfessel, M. van Schilfgaarde, and M. Scheffler. Phys. Rev. Lett., 70, 29 (1993).

[2.141] S. Wei, B. C. Gao, J. Purnell, S. Buzza, and A. W. Castleman, Jr. Science, 256, 818 (1992).

[2.142] S. F. Cartier, Z. Y. Chen, G. J. Walder, C. R. Sleppy, and A. W. Castleman, Jr. Science, 260, 195 (1993).

[2.143] S. C. Sevov and J. D. Corbett. Science, 262, 880 (1993).

[2.144] U. Zimmermann, N. Malinowski, U. Näher, S. Frank, and T. P. Martin. Phys, Rev. Lett., 72, 3542 (1994).

[2.145] T. P. Martin, N. Malinowski, U. Zimmermann, U. Näher, and H. Schaber. J. Chem. Phys., 99, 4210 (1993).

[2.146] J. Kohanoff, W. Andreoni, and M. Parrinello. Chem. Phys. Lett., 198, 472 (1992).

Was this article helpful?

0 0

Post a comment