S00

Wavenumbers (cm"1)

Fig. 11.38. Raman spectra of powder samples of pristine C^ and the pressure-induced phases fcc(p Qo) and ri^pC«) [11.160],

1100 1300 1500

Raman shift (cm"1)

1100 1300 1500

Raman shift (cm"1)

Raman shift [cm ']

Fig. 11.39. (a) Room temperature Raman spectrum of TDAE-CM at 1.16 eV laser excitation energy compared to that of undoped CM. Note the small red shift of the spectral lines, the broadening of the Hg modes, and the new mode (labeled NEW) at 961 cm-1, (b) Comparison of Raman spectra of TDAE-CW with metallic KjC^ and insulating K^C^. Qualitative similarity between the TDAE-C«, and the metallic K3 Cm spectra is observed and is attributed to charge transfer and electron-phonon coupling effects. Identifications are given in (a) for the most prominent features in the TDAE-Qo spectra with symmetry designations given in (b) [11.161],

Raman shift [cm"1]

Fig. 11.39. (a) Room temperature Raman spectrum of TDAE-CM at 1.16 eV laser excitation energy compared to that of undoped CM. Note the small red shift of the spectral lines, the broadening of the Hg modes, and the new mode (labeled NEW) at 961 cm-1, (b) Comparison of Raman spectra of TDAE-CW with metallic KjC^ and insulating K^C^. Qualitative similarity between the TDAE-C«, and the metallic K3 Cm spectra is observed and is attributed to charge transfer and electron-phonon coupling effects. Identifications are given in (a) for the most prominent features in the TDAE-Qo spectra with symmetry designations given in (b) [11.161], molecules in the pressure-induced phases are distorted from icosahedral Ih symmetry and are cross-linked with one another [11.160].

11.10. Vibrational Spectra of Other Fullerene-Related

Materials

In the section we give examples of the vibrational spectra of other fullerene-related materials, specifically TDAE-Qo and TDAE-CV0 [11.161]. It is expected that the vibrational spectra for many other fullerene-based materials will be explored in the future, as the structure and properties for new fullerene derivatives are investigated.

Since TDAE-C60 is the organic ferromagnet with the highest transition temperature (see §18.5.2) (Tc = 16.1 K) [11.162,163], many of the properties of TDAE-C60 have been studied, including its vibrational spectra and crystal structure (see §8.7.3). Shown in Fig. 11.39 are comparisons of the Raman spectrum of TDAE-C60 to those of C60 [Fig. 11.39(a)] and to those of K3C60 and K^Qq [Fig. 11.39(b)], showing significant line broadening and suppression of the Ag(2) mode in TDAE-Qo, suggestive of significant electron-phonon coupling. A new line at 961 cm-1 is also seen in the TDAE-Qo spectrum [11.161]. The mode shifts of the Hg and Ag modes are quite similar to those for K3Q0 [11.164] but the broadening and damping of the Raman features are much less for TDAE-Q). Studies of the Raman effect as a function of incident laser power show evidence for a phototransformed phase in this material [11.164], Infrared measurements show negligible mode shifts or splittings for the IR modes, except possibly for the mode at 1428 cm"1 [11.164].

The Raman spectrum for TDAE-Qo shows much narrower Raman features than for TDAE-Qo, suggesting lower electron-phonon coupling for TDAE-Q0. The lower-frequency intramolecular modes for TDAE-Q0 are significantly enhanced by cooling to low temperature (10 K), while air exposure of TDAE-Qo strongly damps all the Ag and Hg modes and gives rise to a new broad Raman feature at 1848 cm ' [11.161,165].

References

[11.1] A. F. Hebard. Phys. Today, 45, 26 (1992). November issue.

[11.2] R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, and F. A. Thiel. Nature (London), 350, 320 (1991).

[11.3] K. A. Wang, Y. Wang, P. Zhou, J. M. Holden, S. L. Ren, G. T. Hager, H. F. Ni, P. C. Eklund, G. Dresselhaus, and M. S. Dresselhaus. Phys. Rev. B, 45, 1955 (1992).

[11.4] G. Meijer, D. S. Bethune, W. C. Tang, H. J. Rosen, R. D. Johnson, R. J. Wilson, D. D. Chambliss, W. G. Golden, H. Seki, M. S. de Vries, C. A. Brown, J. R. Salem, H. E. Hunziker, and H. R. Wendt. In R. S. Averback, J. Bernholc, and D. L. Nelson (eds.), Clusters and Cluster-Assembled Materials, MRS Symposia Proceedings, vol. 206, p. 619, Materials Research Society Press, Pittsburgh, PA (1991).

[11.5] R. E. Stanton and M. D. Newton. J. Phys. Chem., 92, 2141 (1988).

[11.6] F. Negri, G. Orlandi, and F. Zerbetto. Chem. Phys. Lett., 144, 31 (1988).

[11.7] D. E. Weeks and W. G. Harter. J. Chem. Phys., 90, 4744 (1989).

[11.8] D. S. Bethune, G. Meijer, W. C. Tang, and H. J. Rosen. Chem. Phys. Lett., 174, 219 (1990).

[11.9] Z. C. Wu, D. A. Jelski, and T. F. George. Chem. Phys. Lett., 137, 291 (1987).

[11.10] Y. Wang, D. Tomänek, and G. F. Bertsch. Phys. Rev. B, 44, 6562 (1991).

[11.11] T. Yildirim and A. B. Harris. Phys. Rev. B, 46, 7878 (1992).

[11.12] L. Pintschovius, B. Renker, F. Gompf, R. Heid, S. L. Chaplot, M. Haluska, and H. Kuzmany. Phys. Rev. Lett., 69, 2662 (1992).

[11.13] L. Pintschovius, S. L. Chaplot, R. Heid, B. Renker, M. Haluska, and H. Kuzmany. New York, Berlin (1993). Springer-Verlag. Springer series in solid-state sciences, H. Kuzmany, J. Fink, M. Mehring, and S. Roth, (eds.), vol. 117, p. 162.

[11.14] M. K. Nissen, S. M. Wilson, and M. L. W. Thewalt. Phys. Rev. Lett., 69, 2423 (1992).

[11.15] P. Zhou, K.-A. Wang, Y. Wang, P. C. Eklund, M. S. Dresselhaus, G. Dresselhaus, and R. A. Jishi. Phys. Rev. B, 46, 2595 (1992).

[11.16] G. Meijer and D. S. Bethune. Chem. Phys. Lett., 175, 1 (1990).

[11.17] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund. J. Mater. Res., 8, 2054 (1993).

[11.18] E. Brendsdal, J. Brunvoll, B. N. Cyvin, and S. J. Cyvin. In I. Harguttai (ed.), Qua-sicrystals, Network and Molecules of Five-fold Symmetry, p. 277. VCH Publishers, New York (1990).

[11.19] P. C. Eklund, P. Zhou, K.-A. Wang, G. Dresselhaus, and M. S. Dresselhaus. J. Phys. Chem. Solids, 53, 1391 (1992).

[11.20] Z. H. Dong, P. Zhou, J. M. Holden, P. C. Eklund, M. S. Dresselhaus, and G. Dresselhaus. Phys. Rev. B, 48, 2862 (1993).

[11.21] K. A. Wang, A. M. Rao, P. C. Eklund, M. S. Dresselhaus, and G. Dresselhaus. Phys. Rev. B, 48, 11375 (1993).

[11.22] R. A. Jishi, R. M. Mirie, and M. S. Dresselhaus. Phys. Rev. B, 45, 13685 (1992).

[11.23] A. A. Quong, M. R. Pederson, and J. L. Feldman. Solid State Commun., 87, 535 (1993).

[11.24] J. L. Feldman, J. Q. Broughton, L. L. Boyer, D. E. Reich, and M. D. Kluge. Phys. Rev. B, 46, 12731 (1992).

[11.25] S. Guha, J. Menendez, J. B. Page, G. B. Adams, G. S. Spencer, J. P. Lehman, P. Gi-annozzi, and S. Baroni. Phys. Rev. Lett., 12, 3359 (1994).

[11.26] M. Schlüter, M. Lannoo, M. Needels, G. A. Baraff, and D. Tomänek. J. Phys. Chem. Solids, 53, 1473 (1992). In this reference the normal mode models were prepared by M. Grabow.

[11.27] M. A. Schlüter, M. Lannoo, M. Needels, G. A. Baraff, and D. Tomänek. Materials Science and Engineering, B19, 129 (1993).

[11.28] L. T. Chadderton. J. Phys. Chem. Solids, 54, 1027 (1992).

[11.29] H. Lamb. London, Math. Soc. Trans., 14, 50 (1883).

[11.30] A. M. Vassallo (1992). Unpublished. Cited in Ref. [11.28].

[11.31] A. M. Vassallo, L. S. Pang, P. A. Cole-Clark, and M. A. Wilson. J. Am. Chem. Soc., 113, 7820 (1991).

[11.32] D. E. Weeks and W. G. Harter. Chem. Phys. Lett., 144, 366 (1988).

[11.33] E. Brendsdal, B. N. Cyvin, J. Brunvoll, and S. J. Cyvin. Spectrosc. Lett., 21, 313 (1988).

[11.34] S. J. Cyvin, E. Brendsdal, B. N. Cyvin, and J. Brunvoll. Chem. Phys. Lett., 143, 377 (1988).

[11.35] R. S. Ruoff and A. L. Ruoff. Appl. Phys. Lett., 59, 1553 (1991).

[11.36] M. D. Newton and R. E. Stanton. J. Am. Chem. Soc., 108, 2469 (1986).

[11.37] Z. Slanina, J. M. Rudzinski, M. Togasi, and E. Osawa. J. Mol. Struct., 202, 169 (1989).

[11.38] G. B. Adams, J. B. Page, O. F. Sankey, K. Sinha, J. Menendez, and D. R. Huffman. Phys. Rev. B, 44, 4052 (1991).

[11.39] R. Jones, C. D. Latham, M. I. Heggie, V. J. B. Torres, S. Oberg, and S. K. Estreicher. Phil. Mag. Lett., 65, 291 (1992).

[11.40] J. Kohanoff, W. Andreoni, and M. Parrinello. Phys. Rev. B, 46, 4371 (1992).

[11.41] C. I. Frum, R. Engleman Jr., H. G. Hedderich, P. F. Bernath, L. D. Lamb, and D. R. Huffman. Chem. Phys. Lett., 176, 504 (1991).

[11.42] B. Chase, N. Herron, and E. Holler. J. Phys. Chem., 96, 4262 (1992).

[11.43] F. Negri, G. Orlandi, and F. Zerbetto. Chem. Phys. Lett., 190, 174 (1992).

[11.44] P. H. M. van Loosdrecht, P. J. M. van Bentum, and G. Meijer. Phys. Rev. Lett., 68, 1176 (1992).

[11.45] G. Dresselhaus, M. S. Dresselhaus, and P. C. Eklund. Phys. Rev. B, 45, 6923 (1992).

[11.46] S. P. Love, D. McBranch, M. I. Salkola, N. V. Coppa, J. M. Robinson, B. I. Swanson, and A. R. Bishop. Chem. Phys. Lett., 225, 170 (1994).

[11.47] W. G. Harter and T. C. Reimer. Chem. Phys. Lett., 194, 230 (1992).

[11.48] F. Negri, G. Orlandi, F. Zerbetto, G. Ruani, A. Zakhidov, C. Taliani, K. Kinuchi, and Y. Achiba. Chem. Phys. Leu., 211, 353 (1993).

[11.49] W. G. Harter. Principles of Symmetry, Dynamics and Spectroscopy. John Wiley & Sons, New York (1993).

[11.50] R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Phys. Rev. B, 50, 5680 (1994).

[11.51] J. D. Axe, S. C. Moss, and D. A. Neumann. In H. Ehrenreich and F. Spaepen (eds.), Solid State Physics: Advances in Research and Applications, vol. 48, pp. 149-224, New York (1994). Academic Press. Chapter 3.

[11.52] D. A. Neumann, J. R. D. Copley, W. A. Kamitakahara, J. J. Rush, R. L. Cappelletti, N. Coustel, J. E. Fischer, J. P. McCauley, Jr., A. B. Smith, III, K. M. Creegan, and D. M. Cox. J. Chem. Phys., 96, 8631 (1992).

[11.53] K. Prassides, C. Christides, M. J. Rosseinsky, J. Tomkinson, D. W. Murphy, and R. C. Haddon. Europhys. Lett., 19, 629 (1992).

[11.54] J. R. D. Copley, D. A. Neumann, R. L. Cappelletti, and W. A. Kamitakahara. J. Phys. Chem. Solids, 53, 1353 (1992).

[11.55] D. A. Neumann, J. R. D. Copley, W. A. Kamitakahara, J. J. Rush, R. L. Paul, and R. M. Lindstrom. J. Phys. Chem. Solids, 54, 1699 (1993).

[11.56] S. A. Fitzgerald and A. J. Sievers. Phys. Rev. Lett., 70, 3177 (1993).

[11.57] M. Matus and H. Kuzmany. Appl. Phys. A, 56, 241 (1993).

[11.58] M. Manfredini, C. E. Bottani, and P. Milani. Chem. Phys. Lett., 226, 600 (1994).

[11.59] R. Ttycko, G. Dabbagh, M. J. Rosseinsky, D. W. Murphy, A. P. Ramirez, and R. M. Fleming. Phys. Rev. Lett., 68, 1912 (1992).

[11.60] X. P. Li, J. P. Lu, and R. M. Martin. Phys. Rev. B, 46, 4301 (1992).

[11.61] A. S. Lipin and B. N. Mavrin. Phys. Stat. Sol. (b), 177, 85 (1993).

[11.62] S. Huant, J. B. Robert, G. Chouteau, P. Bernier, C. Fabre, and A. Rassat. Phys. Rev. Lett., 69, 2666 (1992).

[11.63] T. Yildirim, O. Zhou, J. E. Fischer, N. Bykovetz, R. A. Strongin, M. A. Cichy, A. B. Smith III, C. L. Lin, and R. Jelinek. Mature (London), 360, 568 (1992).

[11.64] W. P. Beyermann, M. F. Hundley, J. D. Thompson, F. N. Diederich, and G. Grüner. Phys. Rev. Lett., 68, 2046 (1992).

[11.65] E. Grivei, M. Cassart, J.-P. Issi, L. Langer, B. Nysten, and J.-P. Michenaud. Phys. Rev.

[11.66] S. Huant, G. Chouteau, J. B. Robert, P. Bernier, C. Fabre, A. Rassat, and E. Bustarret.

[11.67] M. Matus, J. Winter, and H. Kuzmany. vol. 117, Springer-Verlag, Berlin (1993). Springer Series in Solid-State Sciences, ed. H. Kuzmany, J. Fink, M. Mehring and S. Roth, p. 255.

[11.68] M. Sprik, A. Cheng, and M. L. Klein. J. Phys. Chem., 96, 2027 (1992).

[11.69] K. H. Michel. J. Chem. Phys., 97, 5155 (1992).

[11.70] J. P. Lu, X. P. Li, and R. M. Martin. Phys. Rev. Lett., 68, 1551 (1992).

[11.71] A. Cheng and M. L. Klein. J. Phys. Chem. 95, 6750 (1992).

[11.72] B. Renker, F. Gompf, R. Heid, P. Adelmann, A. Heiming, W. Reichardt, G. Roth, H. Schober, and H. Rietschel. Z. Phys. B-Cond. Mat., 90, 325 (1993).

[11.73] R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Phys. Rev. B, 49, 2143 (1994).

[11.74] T Matsuo, H. Suga, W. I. F. David, R. M. Ibberson, P. Bernier, A. Zahab, C. Fabre, A. Rassat, and A. Dworkin. Solid State Commun., 83, 711 (1992).

[11.75] P. Zhou, A. M. Rao, K. A. Wang, J. D. Robertson, C. Eloi, M. S. Meier, S. L. Ren, X. X. Bi, P. C. Eklund, and M. S. Dresselhaus. Appl. Phys. Lett., 60, 2871 (1992).

[11.76] S. J. Duclos, R. C. Haddon, S. H. Glarum, A. F. Hebard, and K. B. Lyons. Science, 254, 1625 (1991).

[11.77] H. Kuzmany, M. Matus, T. Pichler, and J. Winter. In K. Prassides (ed.), Phys. and Chemistry of Fullerenes, Kluwer, Academic Press, Dordrecht. NATO ASI-C Series: Crete, vol. 443, p. 287 (1993).

[11.78] S. H. Tolbert, A. P. Alivisatos, H. E. Lorenzana, M. B. Kruger, and R. Jeanloz. Chem. Phys. Lett., 188, 163 (1992).

[11.79] S. J. Duclos, K. Brister, R. C. Haddon, A. R. Kortan, and F. A. Thiel. Nature (London), 351, 380 (1991).

[11.80] A. M. Rao, P. Zhou, K.-A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W. T. Lee, X.-X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan, and I. J. Amster. Science, 259, 955 (1993).

[11.81] D. S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, and M. S. de Vries. Chem. Phys. Lett., 179, 181 (1991).

[11.82] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman. Nature (London), 347, 354 (1990).

[11.83] C. Coulombeau, H. Jobic, P. Bernier, C. Fabre, and A. Rassat. /. Phys. Chem., 96, 22 (1992).

[11.84] R. L. Cappelletti, J. R. D. Copley, W. Kamitakahara, F. Li, J. S. Lannin, and D. Ramage. Phys. Rev. Lett., 66, 3261 (1991).

[11.85] A. Lucas, G. Gensterbium, J. J. Pireaux, P. A. Thiry, R. Caudano, J. P. Vigneron, and P. Lambin. Phys. Rev. B, 45, 13694 (1992).

[11.86] K. Prassides, T. J. S. Dennis, J. P. Hare, J. Tomkinson, H. W. Kroto, R. Taylor, and

D. R. M. Walton. Chem. Phys. Lett., 187, 455 (1991).

[11.87] G. Gensterbium, L. M. Yu, J. J. Pireaux, P. A. Thiry, R. Caudano, J. M. Themlin, S. Bouzidi, F. Coletti, and J. M. Debever. Appl. Phys. A, 56, 175 (1993).

[11.88] R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus, K. A. Wang, P. Zhou, A. M. Rao, and P. C. Eklund. Chem. Phys. Lett., 206, 187 (1993).

[11.89] Y. Wang, J. M. Holden, A. M. Rao, P. C. Eklund, U. Venkateswaran, D. Eastwood, R. L. Lidberg, G. Dresselhaus, and M. S. Dresselhaus. Phys. Rev. B, 51, 4547 (1995).

[11.90] W. Guss, J. Feldmann, E. O. Gobel, C. Taliani, H. Mohn, W. Muller, P. Haubler, and H. U. ter Meer. Phys. Rev. Lett., 72, 2644 (1994).

[11.91] G. Gensterbium, L.-M. Yu, J. J. Pireaux, P. A. Thiry, R. Caudano, P. Lambin, A. A. Lucas, W. Krätschmer, and J. E. Fischer. J. Phys. Chem. Solids, S3, 1427 (1992).

[11.92] M. C. Martin, J. Fabian, J. Godard, P. Bernier, J. M. Lambert and L. Mihaly. Phys. Rev. B, 51, 2844 (1995).

[11.93] M. C. Martin, D. Koller, and L. Mihaly. Phys. Rev. B, 50, 6538 (1994).

[11.94] R. Winkler, T. Pichler, and H. Kuzmany. In H. Kuzmany, J. Fink, M. Mehring, and S. Roth (eds.), Progress in Fullerene Research: International Wmterschool on Electronic Properties of Novel Materials, p. 349 (1994). Kirchberg Winter School, World Scientific Publishing Co., Ltd., Singapore.

[11.95] M. C. Martin, X. Du, and L. Mihaly. In H. Kuzmany, J. Fink, M. Mehring, and S. Roth (eds.), Progress in Fullerene Research: International Winterschool on Electronic Properties of Novel Materiab, p. 353 (1994). Kirchberg Winter School, World Scientific Publishing Co., Ltd., Singapore.

[11.96] K. Kamaräs, K. Matsumoto, M. Wojnowski, E. Schönherr, H. Klos, and B. Gotschy. In H. Kuzmany, J. Fink, M. Mehring, and S. Roth (eds.), Progress in Fullerene Research: International Winterschool on Electronic Properties of Novel Materials, p. 357 (1994). Kirchberg Winter School, World Scientific Publishing Co., Ltd., Singapore.

[11.97] S. J. Chase, W. S. Bacsa, M. G. Mitch, L. J. Pilione, and J. S. Lannin. Phys. Rev. B, 46, 7873 (1992).

[11.98] A. Rosenberg and D. P. Dilella. Chem. Phys. Lett., 223, 76 (1994).

[11.99] C. Coulombeau, H. Jobic, P. Bernier, C. Fabre, D. Schültz, and A. Rassat. C. Rend. Acad. Sei. Paris, Série II, 313, 1387 (1991).

[11.100] J. W. White, G. Lindsell, L. Pang, A. Palmisano, D. S. Sivia, and J. Tomkinson. Chem. Phys. Lett., 191, 92 (1992).

[11.101] A. A. Lucas. J. Phys. Chem. Solids, 53, 1415 (1992).

[11.102] J. E. Rowe, R. A. Malic, and E. E. Chaban. Bulletin Amer. Phys. Soc., 39, 212 (1994). C23.2 at APS March meeting.

[11.103] A. Sellidj and B. E. Koel. J. Phys. Chem., 97, 10076 (1993).

[11.104] V. S. Babu and M. S. Seehra. Chem. Phys. Lett., 196, 569 (1992).

[11.105] K. Kamarâs, L. Akselrod, S. Roth, A. Mittelbach, W. Hönle, and H. G. von Schner-ing. Chem. Phys. Lett., 214, 338 (1993).

[11.106] C. C. Homes, P. J. Horoyski, M. L. W. Thewalt, and B. P. dayman. Phys. Rev. B, 49, 7052 (1994).

[11.107] P. H. M. van Loosdrecht, P. J. M. van Bentum, and G. Meijer. Chem. Phys. Lett., 205, 191 (1993).

[11.108] H. J. Byrne, W. K. Maser, W. W. Rühle, A. Mittelbach, and S. Roth. Appl. Phys. A,

[11.109] H. J. Byrne, L. Akselrod, C. Thomsen, A. Mittelbach, and S. Roth. Appl. Phys. A,

[11.110] M. G. Mitch, S. J. Chase, and J. S. Lannin. Phys. Rev. Lett., 68, 883 (1992).

[11.111] M. G. Mitch and J. S. Lannin. J. Phys. Chem. Solids, 54, 1801 (1993).

[11.112] T. Pichler, M. Matus, J. Kürti, and H. Kuzmany. Phys. Rev. B, 45, 13841 (1992).

[11.113] S. H. Glarum, S. J. Duclos, and R. C. Haddon./. Am. Chem. Soc., 114,1996 (1992).

[11.114] P. Zhou, K. A. Wang, A. M. Rao, P. C. Eklund, G. Dresselhaus, and M. S. Dressel-haus. Phys. Rev. B, 45, 10838 (1992).

[11.115] R. Danieli, V. N. Denisov, G. Ruani, R. Zambone, C. Taliani, A. A. Zakhindov, A. Ugawa, K. Imaeda, K. Yakushi, H. Inokuchi, K. Kikuchi, I. Ikemoto, S. Suzuki, and Y. Achiba. Solid State Commun., 81, 257 (1992).

[11.116] M. S. Dresselhaus and G. Dresselhaus. Light Scattering in Solids III, 51, 3 (1982). edited by M. Cardona and G. Giintherodt, Springer-Verlag Berlin, Topics in Applied Physics.

[11.117] R. A. Jishi and M. S. Dresselhaus. Phys. Rev. B, 45, 6914 (1992).

[11.118] M. G. Mitch and J. S. Lannin. Phys. Rev. B, 51, 6784 (1995).

[11.119] Q. Zhu, O. Zhou, J. E. Fischer, A. R. McGhie, W. J. Romanow, R. M. Strongin, M. A. Cichy, and A. B. Smith, III. Phys. Rev. B, 47, 13948 (1993).

[11.120] J. Winter and H. Kuzmany. In H. Kuzmany, J. Fink, M. Mehring, and S. Roth (eds.), Progress in Fullerene Research: International Winterschool on Electronic Properties of Novel Materials, p. 271 (1994). Kirchberg Winter School, World Scientific Publishing Co., Ltd., Singapore.

[11.121] M. C. Martin, D. Roller, A. Rosenberg, C. Kendziora, and L. Mihaly. Phys. Rev. B, 51, 3210 (1995).

[11.122] A. M. Rao, M. Menon, K. A. Wang, P. C. Eklund, K. R. Subbaswamy, D. S. Cornett, M. A. Duncan, and I. J. Amster. Chem. Phys. Lett., 224, 106 (1994).

[11.123] M. J. Rice and H. Y. Choi. Phys. Rev. B, 45, 10173 (1992).

[11.124] P. C. Eklund, A. M. Rao, Y. Wang, P. Zhou, K. A. Wang, J. M. Holden, M. S. Dresselhaus, and G. Dresselhaus. Thin Solid Films, 257, 211 (1995).

[11.125] T. Pichler, J. Kürti, and H. Kuzmany. Conds. Matter Commun., 1, 21 (1993).

[11.126] T. Pichler, R. Winkler, and H. Kuzmany. Phys. Rev. B, 49, 15879 (1994).

[11.127] K. J. Fu, W. L. Karney, O. L. Chapman, S. M. Huang, R. B. Kaner, F. Diederich, K. Holczer, and R. L. Whetten. Phys. Rev. B, 46, 1937 (1992).

[11.128] X. K. Wang, R. P. H. Chang, A. Patashinski, and J. B. Ketterson. J. Mater. Res., 9, 1578 (1994).

[11.129] E. Sohmen, J. Fink, and W. Kratschmer. Europhys. Lett., 17, 51 (1992).

[11.130] S. Rice. Private communication (1993).

[11.131] E. E. Ferguson and F. A. Matsen. J. Chem. Phys., 29, 105 (1958).

[11.132] M. J. Rice, V. M. Yartsev, and C. S. Jacobsen. Phys. Rev. B, 21, 3427 (1980).

[11.133] M. J. Rice, L. Pietronero, and P. Bruesch. Solid State Commun., 21, 757 (1977).

[11.134] T. Pichler, M. Matus, and H. Kuzmany. Solid State Commun., 86, 221 (1993).

[11.135] J. Winter and H. Kuzmany. Solid State Commun., 84, 935 (1993).

[11.136] D. Roller, M. C. Martin, X. Du, L. Mihaly, and P. W. Stephens. Bulletin Amer. Phys. Soc., 39, 213 (1994). Unpublished, paper C23.8 at APS.

[11.137] M. C. Martin, D. Roller, X. Du, P. W. Stephens, and L. Mihaly. Phys. Rev. B, 49, 10818 (1994).

[11.138] A. Jánossy, O. Chauvet, S. Pekker, J. R. Cooper, and L. Forró. Phys. Rev. Lett., 71, 1091 (1993).

[11.139] O. Chauvet, G. Oszányi, L. Forró, P. W. Stephens, M. Tegze, G. Faigel, and A. Jánossy. Phys. Rev. Lett., 72, 2721 (1994).

[11.140] M. G. Mitch, G. P. Lopinski, and J. S. Lannin. In P. Bernier, T. W. Ebbesen, D. S. Bethune, R. Metzger, L. Y. Chiang, and J. W. Mintmire (eds.), "Science and Technology of Fullerene Materials" MRS Symposium Proc. vol. 359, 493 (1995).

[11.141] C. Christides, D. A. Neumann, K. Prassides, J. R. D. Copley, J. J. Rush, M. J. Rosseinsky, D. W. Murphy, and R. C. Haddon. Phys. Rev. B, 46, 12088 (1992).

[11.142] C. Christides, I. M. Thomas, T. J. S. Dennis, and R. Prassides. Europhys. Lett., 22, 611 (1993).

[11.143] K. Raghavachari and C. M. Rohlfing. /. Phys. Chem., 95, 5768 (1991).

[11.144] Y. Wang, J. M. Holden, A. M. Rao, W.-T. Lee, G. T. Hager, X. X. Bi, S. L. Ren, G. W. Lehman, G. T. Hager, and P. C. Eklund. Phys. Rev. B, 45, 14396 (1992).

[11.145] F. Negri, G. Orlandi, and F. Zerbetto. J. Amer. Chem. Soc., 113, 6037 (1991).

[11.146] Y. Shinohara, R. Saito, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus. Chem. Phys. Lett., 227, 365 (1994).

[11.147] R. A. Jishi, R. M. Mirie, M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund. Phys. Rev. B, 48, 5634 (1993).

[11.148] Z. H. Wang, M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund. Phys. Rev. B, 48, 16881 (1993).

[11.149] D. W. Snoke, Y. S. Raptis, and K. Syassen. Phys. Rev. B, 45, 14419 (1992).

[11.150] P. H. M. van Loosdrecht, M. A. Verheijen, H. Meeks, P. J. M. van Bentum, and G. Meijer. Phys. Rev. B, 47, 7610 (1993).

[11.151] S. L. Ren, K. A. Wang, P. Zhou, Y. Wang, A. H. Rao, M. S. Meier, J. Selegue, P. C. Eklund. Appl. Phys. Lett., 61, 124 (1992).

[11.152] C. Christides, T. J. S. Dennis, K. Prassides, R. L. Cappelletti, D. A. Neumann, and J. R. D. Copley. Phys. Rev. B, 49, 2897 (1994).

[11.153] A. Cheng and M. L. Klein. Phys. Rev. B, 45, 4958 (1992).

[11.154] K. A. Wang, P. Zhou, A. M. Rao, P. C. Eklund, M. S. Dresselhaus, and R. A. Jishi. Phys. Rev. B, 48, 3501 (1993).

[11.155] G. B. Adams, J. B. Page, O. F. Sankey, and M. O'Keeffe. Phys. Rev. B, 50, 17471 (1994).

[11.156] Y. Wang, J. M. Holden, Z. H. Dong, X. X. Bi, and P. C. Eklund. Chem. Phys. Lett., 211, 341 (1993).

[11.157] M. Menon, K. R. Subbaswamy, and M. Sawtarie. Phys. Rev. B, 49, 13966 (1994).

[11.158] M. Hanfland, H. Beister, and K. Syassen. Phys. Rev. B, 39, 12598 (1989).

[11.159] M. Hanfland, K. Syassen, and R. Sonnenschein. Phys. Rev. B, 40, 1951 (1989).

[11.160] Y. Iwasa, T. Arima, R. M. Fleming, T. Siegrist, O. Zhou, R. C. Haddon, L. J. Rothberg, K. B. Lyons, H. L. Carter, Jr., A. F. Hebard, R. Tycko, G. Dabbagh, J. J. Krajewski, G. A. Thomas, and T. Yagi. Science, 264, 1570 (1994).

[11.161] V. N. Denisov, A. A. Zakhidov, G. Ruani, R. Zamboni, C. Taliani, K. Tanaka, K. Yoshizaea, K. Okahara, T. Yamabe, and Y. Achiba. Synth. Metals, 56,3050 (1993).

[11.162] K. Awaga and Y. Maruyama. Chem. Phys. Lett., 158, 556 (1989).

[11.163] P.-M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Grüner, and J. D. Thompson. Science, 253, 301 (1991).

[11.164] D. Mihailovic, P. Venturini, A. Hassanien, J. Gasperic, K. Lutar, S. Milicev, and V. I. Srdanov. In H. Kuzmany, J. Fink, M. Mehring, and S. Roth (eds.), Progress in Fullerene Research: International Winterschool on Electronic Properties of Novel Materials, p. 275 (1994). Kirchberg Winter School, World Scientific Publishing Co., Ltd., Singapore.

[11.165] K. Okahara. Ph.D. thesis, Kyoto University (1994). Department of Chemistry: Studies on the Electronic and Magnetic Properties of CM and Related Materials (in English).

Was this article helpful?

0 0

Post a comment