Us 5350569 Us 5341639 Us 4922827 Us 5288342 Us 5234475 Jp 5124894

EZ Battery Reconditioning Method

Battery Repair Ebook

Get Instant Access

"US = United States patent; JP = Japanese; FR = French; DE = German; WO International patent application; EP = European patent application.

ing blocks for new chemicals will be a very important future application. Rechargeable batteries may turn out to be another promising application, due to the fact that reversible attachment of hydrogen to C60 could provide a charge storage per unit mass that is better than current metal hydride battery technology [20.150]. Somewhat similar considerations apply to hydrogen storage, perhaps for vehicle propulsion. Use of fullerenes for conversion to other solid products, such as diamond or SiC, may be of value in the future. As a component of solid fuel rocket propellant, fullerenes or fullerene soot may have practical advantages. Fullerenes as optical limiters and as a component in chromatography columns appear to be small-scale applications already under consideration [20.150].

One of the largest impediments to the large-scale commercialization of fullerenes is their relatively high cost. Although the price has come down from about $1000-$2500 per gram for mixed fullerenes in 1990 to less than $100 per gram for 99% pure C60 today, this is still prohibitively expensive for most commercial applications (e.g., batteries). This cost is bound to decrease further, however, since new methods of synthesis, production, purification, separation, processing, and deposition of various fullerenes and their numerous compounds are constantly being discovered.4 Recently, a joint venture company, Fullerene Technologies Inc., was formed by Mitsubishi and MER (Tucson, Arizona) to explore the commercialization of fullerene-based batteries and hydrogen-storage devices. This joint venture announced plans for a plant having a fullerene production capacity of a few tons per day [20.151], Other companies known to be actively working and/or publishing on fullerene applications include such giants as Exxon (fullerene precursors), duPont (fullerene-based compounds), Xerox (fullerene inks, toners, developers, and photoreceptors), SRI (fullerene catalysts, electronics, and fibers), NEC (fullerene-based polymers), and AT&T (fullerene photoconductors, superconductors, and photolithography) [20.152,153],

References

[20.2] H. U. ter Meer. In H. Kuzmany, J. Fink, M. Mehring, and S. Roth (eds.), Progress in Fullerene Research: International Winter School on Electronic Properties of Novel Materials, p. 535 (1994). Kirchberg Winter School, World Scientific Publishing Co., Ltd., Singapore.

[20.3] S. A. Jenekhe, S. K. Lo, and S. R. Flom. Appl. Phys. Lett., 54, 2524 (1989).

[20.4] L. W. Tutt and T. F. Boggess. Progress in Quantum Electronics, 17, 299 (1993).

[20.5] L. W. Tutt and A. Kost. Nature (London), 356, 225 (1992).

4Some examples of such patents: U.S. Pat. No. 5,275,705, 5,281,406, 5,300,203, 5,304,366, 5,310,532, 5,316,636, 5,324,495, 5,338,529, 5,338,571, 5,346,683 (bucky tubes synthesis method), 5,348,936, 5,354,926, 5,364,993.

[20.6] J. E. Wray, K. C. Liu, C. H. Chen, W. R. Garrett, M. G. Payne, R. Goedert, and D. Templeton. Appl. Phys. Lett., 64, 2785 (1994).

[20.7] N. M. Dimitrijevic and P. V. Kamat. J. Phys. Chem., 96, 4811 (1992).

[20.8] M. R. Wasielewski, M. P. O'Neil, K. R. Lykke, M. J. Pellin, and D. M. Gruen. J. Am. Chem. Soc., 113, 2774 (1991).

[20.9] Y. Zeng, L. Biczok, and H. Linschitz. J. Phys. Chem., 96, 5237 (1992).

[20.10] T. W. Ebbesen, Y. Mochizuki, K. Tanigaki, and H. Hiura. Europhys. Lett., 25, 503 (1994).

[20.11] I. V. Bezel, S. V. Chekalin, Y. A. Matveets, A. G. Stepanov, A. F. Yartsev, and V. S. Letokhev. Chem. Phys. Lett., 218, 475 (1994). Erratum: ibid vol. 221, p. 332, 1994.

[20.12] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, C. Stucky, and F. Wudl. Appl. Phys. Lett., 62, 585 (1993).

[20.13] N. S. Sariciftci, L. Smilowitz, C. Zhang, V. I. Srdanov, A. J. Heeger, and F. Wudl. Proc. SPIE - Int. Soc. Opt. Eng., 1852, 297 (1993).

[20.14] B. Kraabel, C. H. Lee, D. McBranch, D. Moses, N. S. Sariciftci, and A. J. Heeger. Chem. Phys. Lett., 213, 389 (1993).

[20.15] K. Lee, R. A. J. Janssen, N. S. Sariciftci, and A. J. Heeger. Phys. Rev. B, 49, 5781 (1994).

[20.16] N. S. Sariciftci and A. J. Heeger. Int. J. Mod. Phys. B, 8, 237 (1994).

[20.17] N. S. Sariciftci, A. J. Heeger, and F. Wudl. J. Appl. Phys., Jpn. Solid State Devices and Materials, Intl. Conf. on Solid State Devices and Materials, pp. 781-784 (1993). 25th International Conference, Chiba, Japan.

[20.19] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl. Science, 258, 1474 (1992).

[20.20] M. E. Orczyk and P. N. Prasad. Photonics Science News, 1, 3 (1994).

[20.21] M. E. Orczyk, B. Swedek, J. Zieba, and P. N. Prasad. In G. R. Möhlmann (ed.), Proceedings of the International Society for Optical Engineering (SPIE). "Nonlinear optical properties of organic materials VII"; Proc. vol. 2285, pp. 166-177, Bellingham, WA (1994). SPIE Optical Engineering Press. San Diego, CA, July 24-29, 1994.

[20.22] S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moener. Phys. Rev. Lett., 66, 1846 (1991).

[20.23] S. Ducharme, A. Gooneskera, B. Jones, J. M. Takacs, and L. Zhang. Opt. Soc. Am. Tech. Digest, 17, 232 (1993).

[20.24] S. Morita, A. A. Zakhidov, and K. Yoshino. Solid State Commun., 82, 249 (1992).

[20.25] T. Kato, T. Kodama, T. Shida, T. Nakagawa, Y. Matsui, S. Suzuki, H. Shiromaru, K. Yamauchi, and Y. Achiba. Chem. Phys. Lett., 180, 446 (1991).

[20.26] T. Kato, T. Kodama, M. Oyama, S. Okasaki, T. Shida, T. Nakagawa, Y. Matsui, S. Suzuki, H. Shiromaru, K. Yamauchi, and Y. Achiba. Chem. Phys. Lett., 186, 35 (1991).

[20.27] A. Hirao, H. Nishizawa, H. Miyamoto, M. Sugiuchi, and M. Hosoya. In Z. H. Kafafi (ed.), Proceedings of the International Society for Optical Engineering (SPIE). Bellingham, WA (1995). SPIE Optical Engineering Press. San Diego, CA, July 13, 1995.

[20.28] Y. Wang, R. West, and C. H. Yuan. J. Am. Chem. Soc., 115, 3844 (1993).

[20.29] R. G. Kepler, J. M. Zeigler, L. A. Harrah, and S. R. Kurtz. Phys. Rev. B, 35, 2818 (1987).

[20.30] K. Yoshino, X. H. Yin, S. Morita, T. Kawai, and A. A. Zakhidov. Solid State Commun., 85, 85 (1993).

[20.31] S. M. Silence, C. A. Walsh, J. C. Scott, and W. E. Moerner. Appl. Phys. Lett., 61, 2967

[20.32] G. C. Valley and M. B. Klein. Opt. Eng., 22, 704 (1983).

[20.33] W. E. Moerner and S. M. Silence. Chem. Rev., 94, 127 (1994).

[20.34] Y. Cui, Y. Zhang, J. S. Prasad, J. S. Schildkraut, and D. J. Williams. Appl. Phys. Lett., 61, 2132 (1992).

[20.35] P. N. Prasad, M. E. Orczyk, B. Swedek, and J. Zieba. Opt. Soc. Amer./Amer. Chem. Soc., Washington, DC (1994).

[20.36] Y. Zhang, Y. P. Cui, and P. N. Prasad. Phys. Rev. B, 46, 9900 (1992).

[20.37] M. C. J. M. Donkers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, and R. J. Twieg. Optics Lett., 18, 1044 (1993).

[20.38] Y. Zhang, S. Ghosal, M. K. Casstevens, and R. Burzynski. Appl. Phys. Lett., 66, 256 (1995).

[20.39] A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty, and W. E. Elias. Optics Lett., 18, 334

[20.40] A. F. Hebard, O. Zhou, Q. Zhong, R. M. Fleming, and R. C. Haddon. Thin Solid Films, 257, 147 (1995).

[20.41] C. J. Wen, T. Aida, I. Honma, and H. Komiyama. DENKIKAGAKU, 62, 264 (1994).

[20.42] Q.-Y. Tong, C. B. Eom, U. Gösele, and A. F. Hebard. J. Electrochem. Soc., 141, L137

[20.43] A. V. Hamza, M. Balooch, R. J. Tench, M. A. Schildbach, R. A. Hawley-Fedder, H. W. H. Lee, and C. McConaghy. J. Vacuum Sei. Tech. B, 11, 763 (1993).

[20.44] A. F. Hebard. Annual Rev. Mater. Sei., 23, 159 (1993).

[20.45] P. Zhou, A. M. Rao, K. A. Wang, J. D. Robertson, C. Eloi, M. S. Meier, S. L. Ren, X. X. Bi, and P. C. Eklund. Appl. Phys. Lett., 60, 2871 (1992).

[20.46] C. Eloi, J. D. Robertson, A. M. Rao, P. Zhou, K. A. Wang, and P. C. Eklund. J. Mater. Res., 8, 3085 (1993).

[20.47] H. G. Busmann, H. Gaber, H. Strasser, and I. V. Hertel. Appl. Phys. Lett., 64, 43 (1994).

[20.48] R. F. Pierret. Field Effect Devices. Addison-Wesley, Reading, MA (1983). Modular Series on Solid State Devices; Vol. 4.

[20.49] J. Kastner, J. Paloheimo, and H. Kuzmany. In Proc. of the Int. Winter School on Electronic Properties of High Temperature Superconductors (IWEPS'92), vol. 113, pp. 512-515, New York (1993). H. Kuzmany, M. Mehring, and J. Fink (eds.). SpringerVerlag.

[20.50] J. Paloheimo, H. Isotalo, J. Kastner, and H. Kuzmany. Synth. Metals, 56, 3185 (1993).

[20.51] K. Hoshimono, S. Fujimori, and S. Fujita. Jpn. J. Appl. Phys. Part 2, Lett., 32, L1070 (1993).

[20.52] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming. Appl. Phys. Lett. 67, 121 (1995).

[20.53] D. Sarkar and N. J. Halas. Solid State Commun., 90, 261 (1994).

[20.54] E. Frankevich, Y. Maruyama, H. O. Y. Achiba, and K. Kikuchi. Solid State Commun., 88, 177 (1993).

[20.55] E. Frankevich, Y. Maruyama, and H. Ogata. Chem. Phys. Lett., 214, 39 (1993).

[20.56] K. M. Chen, Y. Q. Jia, K. Wu, X. D. Zhang, W. B. Zhao, C. Y. Li, and Z. N. Gu. J. Phys. Condensed Matter, 6, L367 (1994).

[20.57] K. M. Chen, Y. Q. Jia, S. X. Jin, K. Wu, and C. Y. Li. MRS Symposium H, paper H7.3 (April 1995).

[20.58] K. M. Chen, Y. Q. Jia, S. X. Jin, K. Wu, X. D. Zhang, W. B. Zhao, C. Y. Li, and Z. N. Gu. (unpublished).

[20.59] H. Yonehara and C. Pac. Appl. Phys. Lett., 61, 575 (1992).

[20.60] K. Pichler, M. G. Harrison, R. H. Friend, and S. Pekker. Synth. Metals, 56, 3229

[20.61] L. Smilowitz, A. W. Hays, G. Wang, A. J. Heeger, and J. E. Bowers, (unpublished).

[20.62] J. B. Camp and R. B. Schwarz. Appl. Phys. Lett., 63, 445 (1993).

[20.63] Y. B. Zhao, D. M. Poirier, R. J. Pechman, and J. H. Weaver. Appl. Phys. Lett., 64, 577 (1994).

[20.64] A. M. Rao, P. Zhou, K.A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W. T. Lee, X.-X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan, and I. J. Amster. Science, 259, 955 (1993).

[20.65] P. Zhou, A. M. Rao, K. A. Wang, J. D. Robertson, C. Eloi, M. S. Meier, S. L. Ren, X. X. Bi, P. C. Eklund, and M. S. Dresselhaus. Appl. Phys. Lett., 60, 2871 (1992).

[20.66] P. C. Eklund, A. M. Rao, P. Zhou, Y. Wang, and J. M. Holden. Thin Solid Films, 257, 185 (1995).

[20.67] Y. Wang, J. M. Holden, X. X. Bi, and P. C. Eklund. Chem. Phys. Lett., 217, 413

[20.68] A. F. Hebard, C. B. Eom, R. M. Fleming, Y. J. Chabal, A. J. Muller, S. H. Glarum, G. J. Pietsch, R. C. Haddon, A. M. Mujsce, M. A. Paczkowski, and G. P. Kochanski. Appl. Phys. A, 57, 299 (1993).

[20.69] K. B. Lyons, A. F. Hebard, D. Inniss, R. L. Opila, Jr., H. L. Carter, Jr., and R. C. Haddon. (unpublished).

[20.71] A. V. Hamza, J. Dykes, W. D. Mosley, L. Dinh, and M. Balooch. Surf. Sci., 318, 368 (1994).

[20.72] H. Hong, W. E. McMahon, P. Zschack, D. S. Lin, R. D. Aburano, H. Chen, and T. C. Chiang. Appl. Phys. Lett., 61, 3127 (1992).

[20.73] H. Hong, R. D. Aburano, E. S. Hirshorn, P. Schack, H. Chen, and T. C. Chiang. Phys, Rev. B, 47, 6450 (1993).

[20.74] M. N. Regueiro, P. Monceau, and J.-L. Hodeau. Nature (London), 355, 237 (1992).

[20.75] R. Meilunas, R. P. H. Chang, S. Z. Lu, and M. M. Kappes. Appl. Phys. Lett., 59, 3461 (1991).

[20.76] R. Meilunas and R. P. H. Chang. J. Mater. Res., 9, 61 (1994).

[20.77] M. Balooch and A. V. Hamza. Appl. Phys. Lett., 63, 150 (1993).

[20.78] A. V. Hamza and M. Balooch. Chem. Phys. Lett., 201, 404 (1993).

[20.79] T. Hashizume, X. D. Wang, Y. Nishina, H. Shinohara, Y. Saito, Y. Kuk, and T. Saku-rai. Jpn. J. Appl. Phys., 31, L880 (1992).

[20.80] T. Sakurai, X. D. Wang, T. Hashizume, Y. Nishina, H. Shinohara, and Y. Saito. Appl. Surf. Sci., 67, 281 (1993).

[20.81] X.-D. Wang, T. Hashizume, H. Shinohara, Y. Saito, Y. Nishina, and T. Sakurai. Phys. Rev. B, 47, 15923 (1993).

[20.82] Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. Phys. Rev. B, 45, 13837 (1992).

[20.83] H. Xu, D. M. Chen, and W. N. Creager. Phys. Rev. Lett., 70, 1850 (1993).

[20.84] D. Chen and D. Sarid. Phys. Rev. B, 49, 7612 (1994).

[20.85] M. Moalem, M. Balooch, A. V. Hamza, W. J. Siekhaus, and D. R. Olander. J. Chem. Phys., 99, 4855 (1993).

[20.86] A. V. Hamza, M. Balooch, and M. Moalem. Surf. Sci., 317, L1129 (1994).

[20.87] M. Balooch and A. V. Hamza. J. Vac. Sci. Technol., B12, 3218 (1994).

[20.88] H. J. Wu, A. S. Hirschon, R. Malhotra, and R. B. Wilson. Preprints of Papers, ACS, Fuel Chemistry Div. 39, 1233 (1994).

[20.89] R. Malhotra, D. McMillen, D. S. Tse, D. C. Lorents, R. Ruoff, and D. Keegan. Energy & Fuels, 7, 685 (1993).

[20.90] J. Cohen, N. M. Lawandy, and E. M. Suuberg. Energy & Fuels, 8, 810 (1994).

[20.91] A. Darwish, H. W. Kroto, R. Taylor, and D. Walton. Fullerene Science & Technology, 1, 571 (1993).

[20.92] K. Shigematsu, K. Abe, M. Mitani, and K. Tanaka. Fullerene Science & Technology, 1, 309 (1993).

[20.93] H. Nagashima, A. Nakaoka, Y. Saito, M. Kato, T. Kawanishi, and K. Itoh. J. Chem. Soc. Chem. Commun., pp. 377-380 (1992).

[20.94] J. M. Cowley, M.-Q. Liu, B. L. Ramakrishna, T. S. Peace, A. K. Wertsching, and M. R. Pena. Carbon, 32, 746 (1994).

[20.95] K. E. Drexler. Nanosystems: Molecular Machinery, Manufacturing, and Computation. John Wiley & Sons, New York (1992).

[20.96] A. Ulman. An Introduction to Ultrathin Organic Films: from Langmuir-Blodgett to Self-Assembly. Academic Press, New York (1991).

[20.97] R. E. Smalley. Accounts Chem. Res., 25, 98 (1992).

[20.98] D. Q. Li and B. I. Swanson. Langmuir: ACS J. Surf. Colloids, 9, 3341 (1993).

[20.99] K. Chen, B. Caldwell, and C. Mirkin. J. Am. Chem. Soc., 115, 1193 (1993).

[20.100] J. K. Gimzewski, S. Modesti, and R. R. Schlittler. Phys. Rev. Lett., 72, 1036 (1994).

[20.101] M. Ferreira, M. F. Rubner, and B. R. Hsieh. In A. F. Garito, A. K. Y. Jen, C. Y. C. Lee, and L. R. Dalton (eds.), Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, MRS Symposia Proceedings, vol. 328, p. 119, Pittsburgh, PA (1994). Materials Research Society Press.

[20.102] R. F. Schinazi, R. Sijbesma, G. Srdanov, C. L. Hill, and F. Wudl. Antimicrobial Agents and Chemotherapy, 37, 1707 (1993).

[20.103] S. H. Friedman, D. L. DeCamp, R. P. Sijbesma, F. Wudl, and G. L. Kenyon. J. Am. Chem. Soc., 115, 6506 (1993).

[20.104] R. Sijbesma, G. Srdanov, F. Wudl, J. A. Castoro, C. L. Wilkins, S. H. Friedman, D. L. DeCamp, and G. L. Kenyon. J. Am. Chem. Soc., 115, 6510 (1993).

[20.105] C. Toniolo, A. Bianco, M. Maggini, G. Scorrano, M. Prato, M. Marastoni, R. Tomatis, S. Spisani, G. Palu, and E. D. Blair. J. Med. Chem., 37, 4558 (1994).

[20.106] T. Tsuchiya, Y. N. Yamakoshi, and N. Miyata. Biochem. Biophys. Res. Commun., 206, 885 (1995).

[20.107] A. D. Schluter, M. Loffler, and V. Enkelmann. Nature (London), 368, 831 (1994).

[20.108] P. R. Gifford, in Kirk-Othmer. Encyclopedia of Chemical Technology, Ed., M. Howe-Grant. vol. 3, pp. 963-1121. John Wiley & Sons. 4th edition. (1992).

[20.109] K. Kinoshita and E. J. Cairns, in Kirk-Othmer. Encyclopedia of Chemical Technology, Vol. 11, pp. pp. 1098-1121. John Wiley & Sons, 4th edition (1992).

[20.110] D. Koruga, S. Hameroff, J. Withers, R. Loutfy, and M. Sundareshan. Fullerene Cm: History, Physics, Nanobiology, Nanotechnology. North-Holland, Amsterdam (1993). Chapter 10.

[20.111] A. I. Sokolov, Y. A. Kufaev, and E. B. Sonin. Physica C, 212, 19 (1993).

[20.112] M. S. Dresselhaus and G. Dresselhaus. Adv. Phys., 30, 139 (1981).

[20.113] J. Chlistunoff, D. Cliffel, and A. J. Bard. Thin Solid Films, 257, 166 (1995).

[20.114] L. Seger, L. Q. Wen, and J. B. Schlenoff. J. Electrochem. Soc., 138 (1991).

[20.115] R. P. Feynman. There's plenty of room at the bottom. John Wiley & Sons, New York (1961).

[20.116] A. R. von Hippel. Science, 138, 91 (1962).

[20.117] K. E. Drexler. Engines of Creation: The Coming Era of Nanotechnology. Anchor Press/Doubleday, New York (1986).

[20.118] J. A. Stroscio and D. M. Eigler. Science, 254, 1319 (1991).

[20.119] J. Viitanen. J. Vacuum Sei. Tech. B: Microelectronics Processing, Phenomena, 11, 115 (1993).

[20.120] R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, and H.-J. Güntherodt. Science, 266, 1979 (1994).

[20.121] S. Saito, S. I. Sawada, N. Hamada, and A. Oshiyama. Mater. Sei. Eng., B19, 105 (1993).

[20.122] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Mat. Sei. Eng., B19, 185 (1993).

[20.123] R. Saito (1994). private communication.

[20.124] H. Schmid and H. W. Fink. Nanotechnology, 5, 26 (1994).

[20.125] C. M. Jin, T. Guo, Y. Chai, A. Lee, and R. E. Smalley. In C. Taliani, G. Ruani, and R. Zamboni (eds.), Proceedings of the First Italian Workshop on Fullerenes: Status and Perspectives, vol. 2 of World Scientific Advanced Series in Fullerenes, pp. 21-29, World Scientific, Singapore (1992).

[20.126] R. E. Smalley and P. Norlander. private communication (1993).

[20.127] J. Resh, D. Sarkar, J. Kulik, J. Brueck, A. Ignatiev, and N. J. Halas. Surf. Sei., 316, L1061 (1994).

[20.128] C. B. Eom, A. F. Hebard, L. E. Trimble, G. K. Celler, and R. C. Haddon. Science, 259, 1887 (1993).

[20.129] V. 1. Orlov, V. I. Nikitenko, R. K. Nikolaev, I. N. Kremenskaya, and Y. A. Ossipyan. JETPLett., 59, 667 (1994).

[20.130] P. J. Blau and C. E. Haberlin. Thin Solid Films, 219, 129 (1992).

[20.131] B. Bhushan, B. K. Gupta, G. W. Vancleef, C. Capp, and J. V. Coe. Appl. Phys. Lett., 62, 3253 (1993).

[20.132] B. Bhushan and B. K. Gupta. J. Appl. Phys., 75, 6156 (1994).

[20.133] B. K. Gupta, B. Bhushan, C. Capp, and J. V. Coe. J. Mater. Res., 9, 2823 (1994).

[20.134] J. Ruan and B. Bhushan. J. Mater. Res., 8, 3019 (1993).

[20.135] T. Thundat, R. J. Warmack, D. Ding, and R. N. Compton. Appl. Phys. Lett., 63, 891 (1993).

[20.137] W. Allers, U. D. Schwartz, G. Gensterblum, and R. Wiesendanger. Appl. Phys. A, 59, 11 (1994).

[20.138] B. K. Gupta and B. Bhushan. Lubrication Engineering, 50, 524 (1994).

[20.139] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley. Nature (London), 318, 162 (1985).

[20.140] R. Taylor, A. G. Avent, T. J. Dennis, J. P. Hare, H. W. Kroto, D. R. M. Walton, J. H. Holloway, E. G. Hope, and G. J. Langley. Nature (London), 355, 27 (1992).

[20.141] K. Jinno, K. Yamamoto, J. C. Fetzer, and W. R. Biggs. J. Microcolumn Separations,

[20.142] D. L. Stalling, C. Y. Guo, K. C. Kuo, and S. Saim. (unpublished).

[20.143] D. L. Stalling, C. Y. Guo, and S. Saim. J. Chromatographic Sei., 31, 265 (1993).

[20.144] A. W. Synowczyk and J. Heinze. vol. 117, pp. 73-77, Berlin (1993). Springer-Verlag. Springer Series in Solid-State Sciences. H. Kuzmany, J. Fink, M. Mehring and

[20.145] B. Johnstone. Far Eastern Economic Review, 155, 78 (1992).

[20.146] D. W. J. Mackey, G. D. Willett, and K. J. Fisher. Journal of Nuclear Medicine, 34, P232 (1993).

[20.147] D. W. J. Mackey, W. M. Burch, I. G. Dance, et al. Nuclear Medicine Commun., 15, 430 (1994).

[20.148] W. Krátschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman. Nature (London), 347, 354 (1990).

[20.150] D. R. Huffman. Mater. Lett., 21, 127 (1994).

[20.151] Chemical Marketing Repórter, 245, 3 (1994).

[20.152] R. M. Baum. Chemical and Engineering News, 71, 8 (1993).

[20.153] S. Moore. Chemical Engineering, 99, 41 (1992).

This Page Intentionally Left Blank

Index

Was this article helpful?

0 0
DIY Battery Repair

DIY Battery Repair

You can now recondition your old batteries at home and bring them back to 100 percent of their working condition. This guide will enable you to revive All NiCd batteries regardless of brand and battery volt. It will give you the required information on how to re-energize and revive your NiCd batteries through the RVD process, charging method and charging guidelines.

Get My Free Ebook


Post a comment