Conclusions

Recent years have seen significant improvements to algorithms for molecular simulation. Many of these improvements are in the calculation of potential energy first and second derivatives, which are generally applicable to all molecular simulations. Computational schemes specially adapted for highly connected bond networks are discussed here.

The recent development of internal coordinate quantum Monte Carlo has made it possible to directly compare classical and quantum calculations for many body systems. Classical molecular dynamics simulations of many body systems may sometimes overestimate vibrational motion due to the leakage of zero point energy. The problem appears to become less severe for more highly connected bond networks and more highly constrained systems. This suggests that current designs of some nanomachine components may be more workable than MD simulations suggest. Further study of classical-quantum correspondence in many body systems is necessary to resolve these concerns.

References:

[1] M. L. Klein, Ann. Rev. Phys. Chem. 36, 525 (1985).

[2] W. G. Hoover, Ann. Rev. Phys. Chem. 34, 103 (1986).

[3] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clrendon Press, Oxford, 1987.

[4] U. Burkert and N. L. Allinger, Molecular Mechanics, American Chemical Society, Washington, DC, 1982.

[5] M. Vacatello, Macromol. Theory Simul. 6, 613 (1997) and references therein.

[6] B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry, World Scientific, Singapore, 1994.

[7] K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley, New York, 1992.

[8] R. E. Tuzun, D. W. Noid, and B. G. Sumpter, Macromol. Theory Simul. 4, 909

[9] R. E. Tuzun, D. W. Noid, and B. G. Sumpter, Macromol. Theory Simul. 5, 771

[10] R. E. Tuzun, D. W. Noid, and B. G. Sumpter, J. Comput. Chem. 18, 1805 (1997).

[11] R. E. Tuzun, D. W. Noid, and B. G. Sumpter, J. Comput. Chem. (in press).

[12] R. E. Tuzun, D. W. Noid, and B. G. Sumpter, J. Comput. Chem. 18, 1513 (1997).

[13] R. E. Tuzun, D. W. Noid, and B. G. Sumpter, J. Chem. Phys. 105, 5494 (1996).

[14] K. J. Miller, R. J. Hinde, and J. Anderson, J. Comput. Chem. 10, 63 (1989).

[15] H. Bekker, H. J. C. Berendsen, and W. F. vanGunsteren, J. Comput. Chem. 16, 527 (1995).

[16] B. Jung, Macromol. Theory Simul. 2, 673 (1993).

[20] S. N. Kreitmeier, D. W. Noid, and B. G. Sumpter, Macromol. Theory Simul. 5, 365 (1997).

[21] R. E. Tuzun, D. W. Noid, and B. G. Sumpter, Macromol. Theory Simul. 5, 203 (1 998).

[22] D. E. Newman, C. Watts, B. G. Sumpter, and D. W. Noid, Macromol. Theory Simul. 6, 577 (1997).

[23] D. W. Noid, R. E. Tuzun, and B. G. Sumpter, Nanotechnology 8, 119 (1997).

[24] J. M. Bowman, B. Gazdy, and Q. Sun, J. Chem. Phys. 91, 2859 (1989).

[25] W. H. Miller, W. L. Hase, and C. L. Darling, J. Chem. Phys. 91, 2863 (1989).

[26] K. F. Lim and D. A. McCormack, J. Chem. Phys. 102, 1705 (1995).

[27] D. A. McCormack and K. F. Lim, J. Chem. Phys. 106, 572 (1997).

This page intentionally left blank.

0 0

Post a comment