References And Notes

2. M. A. Ratner and J. Jortner, in Molecular Electronics , ed. J. Jortner and M. A. Ratner (Blackwell Science

Ltd., London, 1997), pp. 5-72. See also references cited therein.

3. A. J. Bard, Integrated Chemical Systems: A Chemical Approach to Nanotechnology (John Wiley and Sons,

4. J. M. Tour, R. Wu and J. S. Schümm, J. Am. Chem. Soc. 113, 7064 (1991).

5. R. F. W. Bader, P. J. MacDougall and C. D. H. Lau, J. Am. Chem. Soc. 106, 1594 (1984).

6. R. F. W. Bader, Chem. Rev. 91, 893 (1991), and references therein.

7. R. Destro, R. Bianchi, C. Gatti and F. Merati, Chem. Phys. Lett. 186, 47 (1991). G. T. Smith, P. R.

Mallinson, C. S. Frampton, L. J. Farrugia, R. D. Peacock and J. A. K. Howard, J. Am. Chem. Soc. 119, 5028 (1997). R. Flaig, T. Kontsanszky, D. Zobel and P. Luger, J. Am. Chem. Soc. 120, 2227 (1998). G. K. H. Madsen, B. B. Iversen, F. K. Larsen, M. Kapon, G. M. Reisner, F. H. Herbstein, J. Am. Chem. Soc. 120, 10040 (1998). Y. A. Abramov, L. Brammer, W. T. Klooster and R. M. Bullock, Inorg. Chem. 37, 6317 (1998).

8. R. Benesch and V. H. Smith, Jr., in Wave Mechanics - The First Fifty Years, ed. W. C. Price, S. S.

Chissick and T. Ravensdale (Butterworth and Co., London, 1973).

10. P. J. MacDougall, Can. J. Phys. 69, 1423 (1991).

11. J. Wang, B. J. Clark, H. Schmider and V. H. Smith, Jr., Can. J. Chem. 74, 1187, (1996).

12. H. Schmider, J. Chem. Phys. 105, 3627 (1996). H. Schmider and M. Ho, J. Phys. Chem. 100, 17807

13. M. Vos, S. A. Canney, I. E. McCarthy, S. Utteridge, M. T. Michalewicz and E. Weigold, Phys. Rev. B

56, 1309 (1997). J. Nakamura, T. Takeda, K. Asai, N. Yamada, Y. Tanaka, N. Sakai, M. Ito, A. Koizumi and H. Kawata J. Phys. Soc. Japan 64, 1385 (1995). S. Ishibashi, A.A. Manuel, L. Hoffmann and K. Bechgaard, Phys. Rev. B 55, 2048 (1997).

16. M. E. Eberhart, Scientific American, 281,66 (1999). M. E. Eberhart and A. F. Giamei Materials Sci.

17. Gaussian 94 (Revision D.3), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson,

M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. AI-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA (1995).

18. P. J. MacDougall, "On the gradient path towards design tools for nanotechnology that are based on the electron density" New Technology Seminar, NASA Ames Research Center (June 9, 1997), available on video from http://www.nas.nasa,gov/Services/DocCenterNideos/ .

19. C. Gatti, P. J. MacDougall and R. F. W. Bader, J. Chem. Phys. 88, 3792 (1988).

20. P. Kaisjer and V. H. Smith, Jr., in Quantum Science, Methods and Structure, ed. J.-L. Calais (Plenum

21. K. Husimi, Proc. Phys. Math. Soc. Jpn 22, 264 (1940). J. E. Harriman, J. Chem. Phys. 88, 6399

(1988). R. C. Morrison and R. G. Parr, Int. J. Quantum Chem. 39, 823 (1991).

22. FAST was created by V. Watson, F. Merritt, T. Plessel, R. K. McCabe, K. Castegnera, T. Sandstrom, J.

West, R. Baronia, D. Schmitz, P. Kelaita, J. Semans and G. Bancroft, at the NASA Ames Research Center, NAS Division. Information about FAST is at .

23. R. P. Sagar, A. C. T. Ku, V. H. Smith, Jr. and A. M. Simas, J. Chem. Phys. 90, 6520 (1989).

25. D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, and J. C. Ellenbogen, "Overview of

Nanoelectronic Devices", Proc. IEEE 85, 521 (1997).

26. R. C. Jaeger, Microelectronic Circuit Design (McGraw-Hill, New York, 1997).

27. J. C. Ellenbogen and J. C. Love, "Architectures for molecular electronic computers: 1. Logic structures and an adder built from molecular electronic diodes", MITRE Technical Report No. 98W0000183, The MITRE Corporation, McLean, VA, July 1999.

28. Archival data from GAUSSIAN calculations (atomic coordinates, Hartree-Fcck energies, dipole moments, etc.) are available upon request.

29. J. M. Seminario, A. G. Zacarias and J. M. Tour, J. Am. Chem. Soc. 120, 3970 (1998).

30. Known exceptions to this general case are instructive. The ground states of Pd and Pt atoms (taken to be

1 S in ref. 10) have nonlaminar electron dynamics at the origin in momentum-space. These states differ from all other metal atoms in that the outermost electron shell has an "inert" 18-electron configuration. The only other two metals found to posses nonlaminar dynamics at the origin were Bi and Po. This may be related to the use of nonrelativistic ground state wavefunctions. Recently, Essen has elegantly argued that under special circumstances, magnetic effects of relativistic origin can lead to significant macroscopic consequences, particularly in metals and plasmas.31

31. H. Essen, Phys. Rev. E 53, 5228 (1996). H. Essen, J. Phys. A: Math. Gen. 32, 2297 (1999).

32. C. Zhou, M. R. Deshpande, M. A. Reed and J. M. Tour, Appl. Phys. Lett. 71, 611 (1997).

0 0

Post a comment