Contents

1 Introduction 1

1.1 Background 1

1.2 Introduction 2

1.2.1 Precision Engineering 2

1.2.2 Micromilling and Microdrilling 3

1.3 Microelectromechanical Systems (MEMS) 5

1.3.1 An Example: Microphenomenon in Electrophotography 6

1.4 Microelectronics Fabrication Methods 7

1.4.1 Bulk Micromachining 8

1.4.2 Surface Micromachining 8

1.5 Microinstrumentation 9

1.6 Micromechatronics 9

1.7 Nanofmishing 10

1.8 Optically Variable Device 10

1.9 MECS 11

1.10 Space Micropropulsion 11

1.11 e-beam Nanolithography 12

1.12 Nanotechnology 12

1.13 Carbon Nanotubes and Structures 13

1.14 Molecular Logic Gates 14

1.15 Microdevices as Nanolevel Biosensors 15

1.16 Crosslinking in C60 and Derivatisation 16

1.17 Fuel Cell 17

2 Principles of MEMS and MOEMS 19

2.1 Introduction 19

2.2 Driving Principle for actuation 20

2.3 Fabrication Process 21

2.4 Mechanical MEMS 23

2.4.1 Mechanical Sensor 23

2.4.2 Accelerometer, Cantilever and Capacitive Measurement 24

2.4.3 Microphone 25

2.4.4 Gyroscope 26

2.4.5 Mechanical Actuator 26

2.5 Thermal MEMS 28

2.5.1 Thermometry 28

2.5.2 Data Storage Applications 30

2.5.3 Microplate Gas Sensor 30

2.5.4 Thermoactuator 31

2.6 Magnetic MEMS 31

2.7 MOEMS 35

2.8 Spatial Light Modulator 37

2.9 Digital Micromirror Device 38

3. Laser Technology in Micromanufacturing 45

3.1. Introduction 45

3.2. Generation of Laser Light 45

3.3 Properties of Laser Light 49

3.3.1 Monochromacity 50

3.3.2 Directionality 50

3.3.3 Brightness 51

3.3.4 Coherence 51

3.3.5 Spatial Profile 51

3.3.6 Temporal Profile 52

3.4 Practical Lasers 52

3.5 Laser Technology in Micromanufacturing 54

3.5.1 Background 54

3.5.2 Absorption and Reflection of Laser Light 54

3.5.3 Application Technology Fundamentals 56

4 Soft Geometrical Error Compensation Methods Using Laser Interferometer.. 63

4.1 Introduction 63

4.2 Overview of Geometrical Error Calibration 64

4.2.1 Error Measurement System 66

4.2.2 Accuracy Assessment 67

4.3 Geometrical Error Compensation Schemes 68

4.3.1 Look-up Table for Geometrical Errors 69

4.3.2 Parametric Model for Geometrical Errors 70

4.4 Experimental Results 73

4.4.1 Error Approximations 74

4.4.2 Linear Error 74

4.4.3 Straightness Error 77

4.4.4 Angular Error 77

4.4.5 Squareness Error 78

4.4.6 Assessment 79

4.5 Conclusions 79

5 Characterising Etching Process in Bulk Micromachining 83

5.1 Introduction 83

5.2 Wet Bulk Micromachining (WBM) 83

5.3 Review 84

5.4 Crystallography and Its Effects 85

5.4.1 An Example 86

5.5 Silicon as Substrate and Structural Material 87

5.5.1 Silicon as Substrate 87

5.5.2 Silicon as Structural Material 88

5.5.3 Stress and Strain 88

5.5.4 Thermal Properties of Silicon 92

5.6 Wet Etching Process 92

5.6.1 Isotropic Etchants 93

5.6.2 Reaction Phenomenon 93

5.6.3 Isotropic Etch Curves 94

5.6.4 Masking 96

5.6.5 DD Etchant 97

5.7 Anisotropic Etching 97

5.7.1 Anisotropic Etchants 98

5.7.2 Masking for Anisotropic Etchants 98

5.8 Etching Control: The Stop Techniques 99

5.8.1 Boron Diffusion Etch Stop 99

5.8.2 Electrochemical Etching Stop 100

5.8.3 Thin Films and SOI Etch Stop 101

5.9 Problems with Etching in Bulk Micromachining 102

5.9.1 RE Consumption 102

5.9.2 Corner Compensation 103

5.10 Conclusions 104

6 Features of Surface Micromachining and Wafer Bonding Process 107

6.1 Introduction 107

6.2 Photolithography 108

6.3 Surface Micromachining 111

6.3.1 Bulk versus Surface Micromachining 112

6.4 Characterising Surface Micromachining Process 113

6.4.1 Isolation Layer 113

6.4.2 Sacrificial Layer 114

6.4.3 Structural Material 114

6.4.4 Selective Etching 115

6.5 Properties 116

6.5.1 Adhesion 117

6.5.2 Stress 118

6.5.3 Stiction 121

6.6 Wafer Bonding 122

6.6.1 Anodic Bonding 123

6.6.2 Fusion Bonding 124

6.7 Summary 125

7 Micromanufacturing for Document Security: Optically Variable Device 131

7.1 Preamble 131

7.2 Introduction 131

7.3 ODV Foil Microstructures 133

7.3.1 The Security Hologram 133

7.3.3 Catpix™ Electron Beam Lithography Microstructure 137

7.3.4 Structural Stability 138

7.3.5 Pixelgram™ Palette Concept 139

7.3.6 Exelgram™ Track based OVD Microstructure 141

7.3.7 Covert Image Micrographic Security Features 144

7.3.8 Kinegram™ and Exelgram™ : Comparison 145

7.3.9 Vectorgram™ Image Multiplexing 145

7.3.10 Interstitial Groove Element Modulation 148

7.4 Generic OVD Microstructures 149

7.4.1 Optically Variable Ink Technology 150

7.4.2 Diffractive Data Foils 151

7.4.3 Biometric OVD Technology 154

7.5 NanoCODES 157

7.5.1 Micromirror OVD 159

7.5.2 Origination of Micromirror OVD 160

7.5.3 Summary of Micromirror OVD Optical Effects 164

7.6 Conclusions 166

8 Nanofmishing Techniques 171

8.1 Introduction 171

8.2 Traditional Finishing Processes 173

8.2.1 Grinding 173

8.2.2 Lapping 173

8.2.3 Honing 174

8.3 Advanced Finishing Processes (AFPs) 174

8.3.1 Abrasive Flow Machining (AFM) 175

8.3.2 Magnetic Abrasive Finishing (MAF) 178

8.3.3 Magnetorheological Finishing (MRF) 180

8.3.4 Magnetorheological Abrasive Flow Finishing (MRAFF) 183

8.3.5 Magnetic Float Polishing (MFP) 188

8.3.6 Elastic Emission Machining (EEM) 189

8.3.7 Ion Beam Machining (IBM) 190

8.3.8 Chemical Mechanical Polishing (CMP) 192

9 Micro and Nanotechnology Applications for Space Micropropulsion 197

9.1 Introduction 197

9.2 Subsystems and Devices for Spacecrafts Micropropulsion 201

9.3 Propulsion Systems 207

9.3.1 Solid Propellant 208

9.3.2 Cold-gas 208

9.3.3 Colloid Thruster 208

9.3.4 Warm-gas 208

9.3.5 Monopropellant and Bipropellant Systems 208

9.3.6 Regenerative Pressurisation Cycles 209

9.3.7 ACDS 209

9.4 Realisation of a Cold-Gas Microthruster 209

9.4.1 Gas and Fluid Dynamic 210

9.4.2 Prototyping 211

9.5 Conclusions 217

10 Carbon Nanotube Production and Applications: Basis of Nanotechnology 219

10.1 Introduction 219

10.2 Nanotechnology and Carbon Nanotube Promises 219

10.3 Growing Interest in Carbon Nanotube 221

10.4 Structure and Properties of Carbon Nanotubes 223

10.5 Production of Carbon Nanotube 225

10.5.1 Chemical Vapour Deposition 226

10.5.2 Arc Discharge 227

10.5.3 Laser Ablation 228

10.5.4 Mechanisms of Growth 229

10.5.5 Purification of Carbon Nanotube 230

10.6 Applications of Carbon Nanotubes 231

10.6.1 Electrical Transport of Carbon Nanotubes for FET 231

10.6.2 Computers 233

10.6.3 CNT Nanodevices for Biomedical Application 234

10.6.4 X-Ray Equipment 235

10.6.5 CNTs for Nanomechanic Actuator and Artificial Muscles 236

10.6.6 Fuel Cells 237

10.6.7 Membrane Electrode Assembly 238

10.6.8 Reinforcement of Bipolar Plates with CNTs 239

10.6.9 Hydrogen Storage in CNTs 240

11 Carbon-Based Nanostructures 247

11.1 Introduction 247

11.2 History of Fullerenes 247

11.3 Structure of Carbon Nanotubes (CNTs) 248

11.3.1 Y-Shaped 248

11.3.2 Double Helical 252

11.3.3 Bamboo Like Structure 252

11.3.4 Hierarchical Morphology Structure 252

11.3.5 Ring Structured MWCNTs 252

11.3.6 Cone Shaped Enf Cap of MWCNTs 252

11.4 Structure of Fullerenes 253

11.4.1 Structure of C48 Fullerenes 253

11.4.2 Toroidal Fullerenes 253

11.4.3 Structure of C60, C59, C58, C57, C53 253

11.4.4 The Small Fullerenes C50 254

11.5 Structure of Carbon Nanoballs (CNBs) 256

11.6 Structure of Carbon Nanofibers (CNFs) 257

11.6.1 Hexagonal CNFs 257

11.6.2 Cone Shaped CNFs 257

11.6.3 Helical CNFs 257

11.7 Porous Carbon 258

11.8 Properties of Carbon Nanostructures 259

11.8.1 Molecular Properties 259

11.8.2 Electronic Properties 259

11.8.3 Optical Properties 259

11.8.4 Mechanical Properties 260

11.8.5 Periodic Properties 260

11.9 Synthesis 261

11.9.1 Carbon Nanotubes 261

11.9.2 Fullerenes 262

11.9.3 Nanoballs 263

11.9.4 Nanofibers 263

11.10 Potential Applications of Nanostructures 265

11.10.1 Energy Storage 265

11.10.2 Hydrogen Storage 265

11.10.3 Lithium Intercalation 266

11.10.4 Electrochemical Supercapacitors 267

11.10.5 Molecular Electronics with CNTs 268

11.11 Composite Materials 270

11.12 Summary 271

12 Molecular Logic Gates 275

12.1 Introduction 275

12.2 Logic Gates 275

12.3 Fluorescence based Molecular Logic Gates 277

12.4 Combinational Logic Circuits 285

12.5 Reconfigurable Molecular Logic 286

12.6 Absorption based Molecular Logic Gates 287

12.7 Molecular Logic Gates: Electronic Conductance 293

12.8 Conclusions 295

13 Nanomechanical Cantilever Devices for Biological Sensors 299

13.1 Introduction 299

13.2 Principles 300

13.3 Static Deformation Approach 301

13.4 Resonance Mode Approach 302

13.5 Heat Detection Approach 305

13.6 Microfabrication 306

13.6.1 Si-based Cantilever 306

13.6.2 Piezoresistive Integrated Cantilever 307

13.6.3 Piezoelectric Integrated Cantilever 308

13.7 Measurement and Readout Technique 309

13.7.1 Optical Method 309

13.7.2 Interferometry 310

13.7.3 Piezoresistive Method 310

13.7.4 Capacitance Method 311

13.7.5 Piezoelectric Method 311

13.8 Biological Sensing 313

13.8.1 DNA Detection 313

13.8.2 Protein Detection 315

13.8.3 Cell Detection 317

13.9 Conclusions 318

14 Micro Energy and Chemical Systems and Multiscale Fabrication 323

14.1 Introduction 323

14.2 Micro Energy and Chemical Systems 327

14.2.1 Heat and Mass Transfer in MECS Devices 328

14.2.2 MECS Technology 328

14.3 MECS Febrication 330

14.3.1 Challenges 330

14.3.2 Feature Sizes 331

14.3.3 Microlamination 332

14.4 Dimensional Control in Microlamination 334

14.4.1 Effects of Patterning on Microchannel Array Performance 335

14.4.2 Theory 336

14.4.3 Microchannel Fabrication 337

14.4.4 Results 338

14.5 Sources of Warpage in Microchannel Arrays 341

14.5.1 Analysis 343

14.5.2 Results 346

14.6 Effects of Registration and Bonding on Microchannel Performance... 347

14.7 Geometrical Constraints in Microchannel Arrays 348

14.8 Economics of Microlamination 351

15 Sculptured Thin Films 357

15.1 Introduction 357

15.2 STF Growth 358

15.5.1 Experimental and Phenomenological 358

15.2.2 Computer Modeling 362

15. 3 Optical Properties 363

15.3.1 Theory 363

15.3.2 Characteristic Behavior 370

15.4 Applications 373

15.4.1 Optical 373

15.4.2 Chemical 375

15.4.3 Electronics 375

15.4.4 Biological 375

15.5 Concluding Remarks 376

16 e-Beam Nanolithography Integrated with Nanoassembly: PCE 383

16.1 Introduction 383

16.2 Electron-Beam Radiation 384

16.2.1 Polymeric Materials 384

16.2.2 Molecular Materials 385

16.3 Self-Assembled Monolayers 387

16.4 Summary and Outlook 391

17 Nanolithography in the Evanescent Near Field 397

17.1 Introduction 397

17.2 Historical Development 398

17.3 Principles of ENFOL 400

17.4 Mask Requirements and Fabrication 401

17.5 Pattern Definition 402

17.5.1 Exposure Conditions 402

17.5.2 Resist Requirements 403

17.5.3 Overcoming the Diffraction Limit 403

17.6. Pattern Transfer 405

17.6.1 Subtractive Pattern Transfer 405

17.6.2 Additive Pattern Transfer 406

17.7 Simulations 407

17.7.1 Simulation Methods and Models 409

17.7.2 Intensity Distribution 410

17.7.3 Depth of Field (DOF) 411

17.7.4 Exposure Variations Due to Edge Enhancements 413

17.8 Nanolithography Using Surface Plasmons 414

17.8.1 Evanescent Interferometric Lithography (EIL) 415

17.8.2 Planar Lens Lithography (PLL) 416

17.8.3 Surface Plasmon Enhanced Contact Lithography (SPECL)... 419

17.9 Conclusions 421

18 Nanotechnology for Fuel Cell Applications 425

18.1 Current State of the Knowledge and Needs 425

18.2 Nanoparticles in Heterogeneous Catalysis 427

18.3 O2 Electroreduction Reaction on Carbon-Supported Pt Catalysts 429

18.4 Carbon Nanotubes as Catalyst Supports 432

18.5 Concluding Remarks 437

19 Derivatisation of Carbon Nanotubes with Amines 441

19.1 Introduction 441

19.2 Experimental Design 442

19.3 Direct Amidation of Carboxilic Functionalities 443

19.4 Direct Amine Addition 445

19.5 Conclusions 450

20 Chemical Crosslinking in C60 Thin Films 453

20.1 Introduction 453

20.2 Experiment 454

20.2.1 Analytical Instruments 454

20.2.2 Deposition of Fullerene Films 455

20.2.3 Reaction with 1,8-Diaminooctane 455

20.3 Results and Discussion 455

20.3.1 (1,8) Diaminooctane-derivatised C60 Powder 455

20.3.2 (1,8) Diaminooctane-derivatised C60 Films 456

20.4 Conclusions 460

Was this article helpful?

0 0
Brain Blaster

Brain Blaster

Have you ever been envious of people who seem to have no end of clever ideas, who are able to think quickly in any situation, or who seem to have flawless memories? Could it be that they're just born smarter or quicker than the rest of us? Or are there some secrets that they might know that we don't?

Get My Free Ebook


Post a comment