Holistic Approach to Problem Definition

To effectively target emerging NBIC technologies, and in particular to make the most of the emerging field of nanobiotechnology, requires a strategic approach to identifying the problem areas in life extension. Biomedical problems currently exist on macro, micro, and nanoscales, and solutions to some apparently straightforward problems could enormously increase life expectancy and quality of life. A holistic approach would examine the key medical problems in the world's population that need to be solved to extend life, and at the same time, would consider the social environment in the aging population to ensure that quality of life and dignity are sustained after technological intervention.

A key element of this top-down approach is to consider the whole human being and not merely the immediate interface of nanobiotechnology with its target problem. The ability to view the needs in this area from a biomedical perspective that starts with the whole human and works down through organ and cellular levels to the molecular (nanoscale) level, will be an essential component of projects with successful outcomes in this field. There is little point in developing isolated, advanced technological systems or medical treatments to find that they solve one problem only to generate many others. For example, ingenious microdevices with nanoscale features that might patrol blood vessels or carry out tissue repairs have been suggested and designed (Moore 2001; Dario et al. 2000). However, there has been little detailed discussion or consideration at this stage regarding biocompatibility issues, particularly of the thrombogenicity (clot-forming potential) of these devices or of their immunogenicity (ability to stimulate an unwanted immune response). In this area, as in many others, there is a need for multidisciplinary teams to work together from the outset of projects to bring medicine and technology together. Ideally, these research teams would include clinicians, biomedical scientists, and engineers rather than being technologist-led projects that ignore much of the vast wealth of information we have already discovered about the human body through medical and biomedical research.

Accepting this need for biomedically informed project design also leads to the conclusion that understanding of the cell-molecule interface, in other words the micro-nanoscale interactions, will be a factor in the extended application of nanobiotechnology. To create a holistic approach to widespread and successful introduction of nanobiotechnologies in life extension will require interdisciplinary teams and exchange of information. Figure C.1 illustrates the possible levels of intervention and some of the emerging solutions where nanobiotechnology will have a role in repair or replacement of damaged elements.

human human

Improved joint replacement Non-invasive and invasive diagnostics for rapid patient monitoring

Cognitive-assist devices Targeted cancer therapies

Artificial organs Sensors for in vivo monitoring Localised drug delivery

Neural stimulation Cardiac materials and therapies cell

0 0

Post a comment