Basic Nanoscience

Foremost among the technological challenges of long-duration space flight are the dangers to human health and physiology presented by the space environment. Acute clinical care is essential to the survival of astronauts, who must face potentially life-threatening injuries and illnesses in the isolation of space. Currently, we can provide clinical care and life support for a limited time, but our only existing option in the treatment of serious illness or injury is expeditious stabilization and evacuation to Earth. Effective tertiary clinical care in space will require advanced, accurate diagnostics coupled with autonomous intervention and, when necessary, invasive surgery. This must be accomplished within a complex man-machine interface, in a weightless environment of highly limited available space and resources, and in the context of physiology altered by microgravity and chronic radiation exposure. Biomolecular approaches promise to enable lightweight, convenient, highly focused therapies guided with the assistance of artificial intelligence enhanced by biomolecular computing. Nanoscopic, minimally invasive technology for the early diagnosis and monitoring of disease and targeted intervention will save lives in space and on Earth. Prompt implementation of specifically targeted treatment will insure optimum use and conservation of therapeutic resources, making the necessity for invasive interventions less likely and minimizing possible therapeutic complications.

0 0

Post a comment