Conclusions

Molecularly resolved analyses of environmental systems will allow us to determine how increasingly complex systems, from the level of cells and microbial communities up to entire ecosystems at the planetary scale, respond to environmental perturbations. With this knowledge in hand, we can move toward rigorous determination of environmental state and prediction of ecosystem change.

High-resolution molecular- and nanometer-scale information from both inorganic and biological components of natural systems will dramatically enhance our ability to utilize microbial processes (such as light-harvesting molecules for solar cells or mineral-solubilizing enzymes for materials processing) for technological purposes. This may be of great importance if we are to reduce our dependence on energetically expensive manufacturing and existing energy resources. For example, bioleaching is an alternative to smelting, bioextraction is an alternative to electrochemistry, biosynthesis of polymers is an alternative to petroleum processing, biomineralization is an alternative to machine-based manufacturing. Ultimately, nano-bio-geo integration will allow us to tease apart the complex interdependencies between organisms and their surroundings so that we may ultimately gain sufficient understanding of environmental systems to avoid the fate of microorganisms grown in a petri dish (Figure D.2).

Figure D.2. Microbial communities growing within a confined space (here shown in a petri dish, left) have a cautionary tale to tell: overuse and/or unbalanced use of resources leads to build up of toxins, shortage of food, overpopulation, and death.
0 0

Post a comment