DOD Impact

It is anticipated that nanotechnology would impact practically all arenas of warfighting in DOD, including command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR). In addition to providing much greater capability in computing power, sensors, and information processing, nanotechnology will also save more lives of our men and women in uniform by the development of lightweight protective armors for the soldiers. The value of nanotechnology to DOD includes, but is not limited to, the following:

a) Chemical and biological warfare defense. Nanotechnology will lead to the development of biochemical sensors to monitor the environment in the battlefield. Chemical and biological warfare agents must be detected at very low levels in real time. Nanotechnology will dramatically improve detection sensitivity and selectivity, even to the point of responding to a few molecules of the biochemical agent. Nanostructures are showing the potential for decontamination and neutralization as well.

b) Protective armor for the warrior. Nanotechnology will lead to the development of extremely strong and lightweight materials to be used as bullet-stopping armors.

c) Reduction in weight of warfighting equipment. Nanotechnology will reduce the volume and weight of the warfighting equipment a soldier/marine must carry in the battlefield by further miniaturization of the sensor/information systems. Development in nanoelectronics and portable power sources based on nanotechnology will provide much-needed capability in information dominance in sensing, communication, situational awareness, decision support, and targeting.

d) High-performance platforms and weapons. By providing small structures with special properties that can be embedded into larger structures, nanotechnology will lead to warfighting platforms of greater-stealth, higher-strength, and lighter-weight structural materials. In addition to higher performance, new materials manufactured by nanotechnology will provide higher reliability and lower life-cycle cost. One example, already in fleet test by the Navy, utilizes nanostructured coatings to dramatically reduce friction and wear. In another example, nanocomposites where clay nanoparticles are embedded in polymer matrices have been shown to have greater fire resistance and can be used onboard ships.

e) High-performance information technology (IT). Nanotechnology is expected to improve the performance of DOD IT systems by several orders of magnitude. Current electronics devices will reach a limit at 100 nm size in another 5 years. Continued advances in IT will require further advances in nanotechnology. Information dominance in network centric warfare and the digital battlefield is critical to DOD in winning the wars of the future.

f) Energy and energetic materials. The DOD has a unique requirement for energetic materials. Fast-release explosives and slow-release propellants must have high energy density while retaining stability. Nanoparticles and nano-energetic materials have shown greater power density than conventional explosives. Nanopowdered materials have also shown promise for improved efficiency in converting stored chemical energy into electricity for use in batteries and fuel cells.

g) Uninhabited vehicles and miniature satellites. Nanotechnology will lead to further miniaturization of the technology that goes into uninhabited vehicles and miniature satellites. The Uninhabited Air Vehicles (UAVs) will have greater range and endurance due to the lighter payload and smaller size. Uninhabited Combat Air Vehicles (UCAVs), will have greater aerial combat capabilities without the g-force limitations imposed on the pilot. Uninhabited Underwater Vehicles (UUVs) will be faster and more powerful due to miniaturization of the navigation and guidance electronics.

0 0

Post a comment