Future Communications Network Architectures

As extremely small and low-cost communications modules are developed, certainly personal access networks — the equipment used by an individual to communicate with his or her near surroundings and to gain access to larger area local area networks and ultimately to the global wide area communications networks of the future — will become ubiquitous. These will mostly be wireless ad hoc networks, since people are mobile. Local area networks, for example, campus or in-building networks with range below 1 km, will be ubiquitous as well, whether wireless or wireline, depending on deployment costs. But how will the dramatic reduction of cost of the physical infrastructure for communications equipment affect the major communication long haul or wide area networks? Currently, the architectures of cross-continental or undersea or satellite communications systems are determined not only by the cost of components but by the costs associated with deployment, provisioning, reconfiguration, protection, security, and maintenance. The simulation and design tools used for complex wide area networks are in their infancy, as are the simulation and design tools for the integrated modules of which they are comprised. We need a breakthrough in simulation and design techniques. As the costs of the physical hardware components for wide area networks come down, the deployment costs will not fall as much, due to the power requirements needed in wide area systems, and this and the complexity of network management will probably determine network architectures. For example, the complexity of managing security and quality of service in a nationwide ad hoc wireless network comprised of billions of only small, low power base stations is enormous. Thus it is much more likely to have hierarchies of scale in networks, first personal, then local, and then medium range, culminating in a backbone network similar to what we have today. Again, we may be able to learn much from how biological networks configure themselves as we develop self-configuring, self-protecting, and self-monitoring networks.

0 0

Post a comment