Future Prospects

Nanotechnology, biotechnology, and information technology are moving closer together, following an accelerated path of unparalleled breakthroughs. Their focus on human dimensions is still emerging but promises to dominate the next decades. Despite efforts of workshop organizers, given the breadth of the topic, it was impossible to recruit leading experts in all the areas where the convergence of NBIC technologies are likely to have significant impacts in 10 to 20 years. In addition, work has really not begun in some of the key application areas, and new areas are likely to emerge that have not yet attracted the attention of many scientists and engineers. Thus, the section below presents the following admittedly speculative additional ideas on how technological convergence may transform human abilities two decades and more in the future. Many of the ideas that follow emerged during the workshop, and others were suggested in discussions with participants afterward.

Work Efficiency

Improvement of human physical and mental performance, at both the individual and group level, can increase productivity greatly. Several concepts are in development that could enhance working environments (cf. IBM 2002). To remain competitive, American industry must continue to find ways to improve quality and efficiency (Mowery 1999; Jorgenson and Wessner 2002). Nanotechnology promises to become an efficient length scale for manufacturing (NSTC 2002) because rearranging matter at the nanoscale via weak molecular interactions would require less energy and material. The recent trend toward intensive electronic monitoring and just-in-time inventories has reduced waste, but tightening the efficiency of manufacturing and distribution supply chains could prove to be a onetime-only improvement in profitability that could not be duplicated in the future (National Research Council 2000).

However, application of new generations of convergent technology has the potential to provide better value to customers at lower cost to producers, offering the possibility of further profitability improvements. For example, even more intensive use of information technology in conjunction with nanotechnology, biotechnology, and cognitive sciences could reduce waste and pollution costs and permit very rapid reconfiguration of manufacturing processes and product lines (National Research Council 1998). Business and industry are already beginning to restructure themselves on a global scale as network-based organizations following fundamentally new management principles.

Biology in conjunction with nanoscale design and IT control has the potential to contribute both abstract models and specific physical processes to the development of customer-centric production that blends the principles of custom-design craftsmanship (which maximizes customer satisfaction) with the principles of assembly-line mass production (which minimizes production costs). In the gestation of higher animals, a single fertilized egg cell differentiates rapidly into specialized cells that grow into very different organs of the body, controlled in a complex manner by the messenger chemicals produced by the cells themselves. Whether based in nanotechnology, information technology, biotechnology, or cognitive based technology, new adaptive production systems could be developed that automatically adjust design features in a way analogous to the growing embryo, without the need to halt production or retool. Convergence of these four technologies could also develop many bio-inspired processes for "growing" key components of industrial products, rather than wastefully machining them out of larger materials or laboriously assembling them from smaller parts (cf. National Research Council 1999).

The Human Body and Mind Throughout the Life Cycle

Improving perceptual capabilities, biohybrid systems, exoskeletons, and metabolic enhancement can be considered for human performance augmentation. Medical implants for sensory replacement, including multiple sensory modalities for visually and hearing impaired persons, and direct brain-

machine interfaces are real possibilities. Controlled metabolism in cells, specific tissues, organs, or the entire body is possible. One application would be increased endurance and resistance to sleep deprivation; another is a method of optimizing oxygenization of blood when metabolism is compromised in a critical medical situation. Others would be realtime genetic testing so that individually tailored drugs can be provided to patients, and an artificial pancreas that would monitor and adjust the release of hormones in the human body.

Increasing intellectual capabilities requires understanding the brain and simulating its processes. Knowledge about the structure, function, and occasional dysfunction of the human mind will provide new ways to increase cognitive capabilities (Steve et al. 2002; National Research Council 1988). Reverse engineering of the human brain may be accomplished in the next two decades that would allow for better understanding of its functions. An artificial brain (Cauller and Penz 2002) could be a tool for discovery, especially if computers could closely simulate the actual brain. It would be revolutionary to see if aspects of human consciousness could be transferred to machines (Kurzweil 1999) in order to better interact with and serve humans.

Sustaining human physical and mental abilities throughout the life span would be facilitated by progress in neuroscience (Stern and Carstensen 2000) and cellular biology at the nanoscale. An active and dignified life could be possible far into a person's second century, due to the convergence of technologies (cf. Saxl 2002). Gene therapy to cure early aging syndromes may become common, giving vastly improved longevity and quality of life to millions of people (Bonadio 2002; Heller 2002; Connolly 2002).

Communication and Education

New communication paradigms (brain-to-brain, brain-machine-brain, group) could be realized in 10-20 years. Neuromorphic engineering may allow the transmission of thoughts and biosensor output from the human body to devices for signal processing. Wearable computers with power similar to that of the human brain will act as personal assistants or brokers, providing valuable information of every kind in forms optimized for the specific user. Visual communication could complement verbal communication, sometimes replacing spoken language when speed is a priority or enhancing speech when needed to exploit maximum mental capabilities (Horn 2002; Hewlett Packard 2002).

People will be able to acquire a radically different instinctive understanding of the world as a hierarchy of complex systems rooted in the nanoscale. Advances in cognitive science will enable nanoscience education, by identifying the best ways for students to conceptualize nanostructures and processes at increasingly advanced stages in their learning (National Institute of Mental Health 2002). Education at all levels will exploit augmented reality, in which multimedia information displays are seamlessly integrated into the physical world. Strategies for hierarchical, architectural, global analysis, and design of complex systems will help integrate the curriculum of schools and inform management decisions across a diverse range of fields.

Mental Health

In many respects, perhaps the most difficult challenge we face in improving human performance is understanding and remediating mental illness (Anderson 1997). For fully the past two centuries, psychiatry has alternated between periods of optimism and pessimism, as well as between competing psychological, social, physiological, chemical, and genetic theories of mental illness. We can hope that these disputes will be resolved through physiological and psychological understanding of mental processes, and that scientific convergence will achieve lasting cures through a combination of biological and cognitive treatments, all assisted by information and nanoscale technologies.

Nanotechnology will provide means to deliver medications to the exact location within the brain where they are needed, thus minimizing negative side effects elsewhere in the nervous system. The convergence of cognitive science with nano-, bio-, and information technologies should permit systematic evaluation of the bewildering range of current psychiatric theories and therapies, and allow clinicians to improve the best treatments. It is also possible that convergent communications and robotics technologies may produce an entirely new category of prosthetic or assistive devices that can compensate for cognitive or emotional deficiencies.

Aeronautics and Space Flight

NBIC synergies could greatly expand capabilities for piloted adaptive aircraft, unmanned aircraft, and human space flight. Nanostructured materials and advanced electronics have the promise of reducing the weight of spacecraft by three quarters in the next 10-20 years. Specific subsystems for human space flight may also be revolutionized by the same combination of technologies, for example durable but light and self-repairing spacesuits, high-performance electronics with low demands for electric power, and low-cost but high-value large orbiting structures. If the problems of orbital launch costs and efficient subsystems can be solved, then human society can effectively exploit Earth orbital space, the Moon, asteroids, and the planet Mars. Several participants in the workshop noted the potential for intelligent machines of the future to take on progressively more human characteristics, so we can well imagine that the first pioneers that take "humanity" far into space will be descendents of Pathfinder and the Voyagers that will be endowed with intelligence and communication capabilities reflecting human behavior.

Food and Farming

Farmers have long appreciated the advantages of science and technology; the convergence of nanotechnology, biotechnology, and information technology could significantly improve their effectiveness. For example, nanoscale genetics may help preserve and control food production. Inexpensive nano-enabled biosensors could monitor the health and nutrition of cattle, transmitting the data into the farmer's personal computer that advises him about the care needed by the animals. In the same way, sensors distributed across farmland could advise the farmer about need for water and fertilizer, thus avoiding wastage and achieving the most profitable acreage crop yield (National Research Council 1997). Bio-nano convergence can provide new ways of actually applying the treatment to the crops, increasing the efficiency of fertilizers and pesticides.

Use of nano-enabled biosensors would monitor freshness to help grocers avoid selling stale goods and to avoid the wastage of discarding perfectly good packaged food that has merely reached an arbitrary shelf life date. The consumer should have access to the same information, both before and after purchase. Many consumers are dissatisfied with the limited information about ingredients on many packaged foods, and the total lack of information about foods served in restaurants. Convergent technologies could provide portable instruments, for example packaged into a pen-like device or perhaps a ring, that could instantly tell the consumer how much sodium, fats, or allergenic substances a food contains.

Sustainable and Intelligent Environments

Sustainable resources of food, water, energy, and materials are achievable through converging technologies. Exact manufacturing, exact integration in biosystems, and IT control will help stabilize the supply of resources. Value will stem from information, including that embodied in the complex structure of manufactured items made from the nanoscale out of common chemical elements, rather than in rare metals or nonrenewable energy supplies. Sensing the environment and biosystems of the world will become essential in global environmental monitoring and remediation. New sources for a distributed energy system are envisioned, as well as new solutions such as highly efficient photosynthetic proteins, membranes, and devices.

Interactive and "intelligent" environments for human activities are envisioned, responding to advancements in areas such as neuro-ergonomics and the needs of persons with disabilities.

External surfaces of buildings could automatically change shape and color to adjust to different conditions of temperature, lighting, wind, and precipitation. Once the science, manufacturing processes, and economic markets have developed sufficiently, adaptive materials need not be especially expensive, especially when their increased performance and energy efficiency are factored in. For example, nanotechnology materials and IT-assisted design could produce new, durable house paints that change color, reflecting heat on hot days and absorbing heat on cold days. Indoors, ordinary walls could be vast computer displays, capable of enhancing the residents' aesthetic experience by displaying changing virtual artworks and wallpapers. Adaptive materials could obtain their energy from temperature differentials between different surfaces (thermocouples) or naturally occurring vibrations (piezoelectric), rather than requiring any electrical input. The ability to engineer inexpensive materials on the nanoscale will be crucial, and information technology can help design the materials as well as being designed into some of the adaptive systems. There also will be a role for cognitive science, because architects need to take account of human needs and the often unexpected ways that human beings respond to particular design features.

Self-Presentation and Fashion

Government-supported academic researchers frequently ignore many economically important industries, in part because those industries traditionally have not involved advanced technology but also perhaps because they were not perceived as "serious" fields. Among these are clothing fashions, jewelry, and cosmetics. Stereotypes aside, these are multibillion dollar industries that could benefit from the new opportunities afforded by convergent technologies. In social life, physical attractiveness is very important. Anything that enhances a person's beauty or dignity improves that individual's performance in relations with other people.

Convergence of nanotechnology and biotechnology with cognitive science could produce new kinds of cosmetics that change with the user's moods, enhancing the person's emotional expressiveness. Components of wearable computers could be packaged in scintillating jewelry, automatically communicating thoughts and feelings between people who are metaphorically and electronically "on the same wave length." Biotechnology could produce new materials that would be combined in manufacturing with nanotechnology-based information technology to produce clothing that automatically adjusts to changing temperatures and weather conditions. Perhaps the colors and apparent textures of this "smart clothing" would adjust also to the wearer's activities and social environment.

Transformation of Civilization

The profound changes of the next two decades may be nothing compared to the utter transformation that may take place in the remainder of the twenty-first century. Processes both of decentralization and integration would render society ever more complex, resulting in a new, dynamic social architecture. There would be entirely new patterns in manufacturing, the economy, education, and military conflict.

People may possess entirely new capabilities for relations with each other, with machines, and with the institutions of civilization. In some areas of human life, old customs and ethics will persist, but it is difficult to predict which realms of action and experience these will be. Perhaps wholly new ethical principles will govern in areas of radical technological advance, such as the acceptance of brain implants, the role of robots in human society, and the ambiguity of death in an era of increasing experimentation with cloning. Human identity and dignity must be preserved. In the same way in which machines were built to surpass human physical powers in the industrial revolution, computers can surpass human memory and computational speed for intended actions. The ultimate control will remain with humans and human society. With proper attention to safeguards, ethical issues, and societal needs, quality of life could increase significantly.

New professions for humans and new roles for machines may arise to mediate between all this complexity and the individual person. Art, music, and literature may attain new levels of subtlety and sophistication, enhancing the mental qualities of life and the innate human appreciation for beauty.

Table 3. History of some very significant augmentations to human performance: Improving our ability to collectively improve ourselves (see also Spohrer 2002)

Generations

Several Key Advancements

(human kind, tools and technology, communication)

-m

Cell, body and brain development

- 100,000

Old Stone Age (Paleolithic), Homo Erectus, speech

-10,000

Homo Sapiens, making tools

0 0

Post a comment