Gene Therapy Reinventing the Wheel or Useful Adjunct to Existing Paradigms

Jeffrey Bonadio, University ofWashington

The availability of the human genome sequence should (a) improve our understanding of disease processes, (b) improve diagnostic testing for disease-susceptibility genes, and (c) allow for individually tailored treatments for common diseases. However, recent analyses suggest that the abundance of anticipated drug targets (yielded by the genome data) will acutely increase pharmaceutical R&D costs, straining the financial outlook of some companies. Therefore, to stay competitive, companies must couple a threshold infrastructure investment with more cost-effective validation/development technology. However, no such technology currently exists.

This paper discusses the potential advantages and disadvantages of gene therapy as a validation/delivery platform for the genomics era. Gene therapy is the use of recombinant DNA as a biologic substance for therapeutic purposes. Although significant technological hurdles exist, for certain drug targets the potential for gene therapy as a validation/delivery platform are enormous. Thus, one may see

• direct, efficient transitions from database query to preclinical validation to lead drug candidate development

• significant improvements in the patient care pathway of important common diseases such as cancer, diabetes, and osteoporosis; these improvements would be expected to yield improved compliance and significantly better control of disease manifestations

The vision is that in 10 to 15 years, the U.S. private sector will have a drug discovery and development pathway that is significantly more cost-effective than what exists now and therefore is capable of taking full advantage of the promise of the human genome database. If this vision is realized, one can easily imagine that the process of transferring advances in drug development from the developed world to the undeveloped world will be significantly enhanced.

To traverse the technological hurdles associated with this vision, an interdisciplinary spirit will be required to advance our knowledge base in basic science and drug development, e.g., geneticists will (again) need to talk to physicists, physiologists to chemists, and cell biologists to engineers.

0 0

Post a comment