Motivation Preparation and Approval Process of the National Nanotechnology Initiative

Four imperatives define the National Nanotechnology Initiative:

8. There is a need for long-term fundamental research leading to systematic methods of control of matter at the nanoscale. All living systems and man-made products work at this scale. This is because all basic building blocks of matter are established and their basic properties are defined in the range between one and a hundred molecular diameters. The first level of organization in biosystems is in the same nanometer range. For example, our body cells typically include nanobiomotors converting energies to the forms needed, such as chemical, electrical, or mechanical. The typical size of the organelles (see Fig. A. 17) in a cell is ten nanometers, which corresponds approximately to ten shoulder-to-shoulder molecules of water. Fundamental understanding of matter at the nanoscale may change our long-term strategies concerning healthcare, the way we manage the environment, our manufacturing practices. This is the first initiative at the national level motivated by and focused on fundamental research.

Figure A.17. All living systems work at the nanoscale: illustration of cellular nanomachines (after Montemagno 2001): (a) Myosin, the principle molecular motor responsible for muscle movement (characteristic dimension L about a few nm); (b) ATP synthase, a chemical assembler (L about 10 nm); (c) Bacterial flagella motor (L about 20 nm); (d) A dynein-microtube complex assembled to form a cilium (L about 50 nm).

Figure A.17. All living systems work at the nanoscale: illustration of cellular nanomachines (after Montemagno 2001): (a) Myosin, the principle molecular motor responsible for muscle movement (characteristic dimension L about a few nm); (b) ATP synthase, a chemical assembler (L about 10 nm); (c) Bacterial flagella motor (L about 20 nm); (d) A dynein-microtube complex assembled to form a cilium (L about 50 nm).

l) Nanotechnology promises to become the most efficient length scale for manufacturing. While we know that the weak interactions at the nanoscale would require small amounts of energy for manufacturing and that precise assembly of matter would lead to products with high performance and no waste, we do not yet have systematic, economic manufacturing methods for production at the nanoscale. Again, a focus on fundamental research is essential in this regard.

li) Large societal pay-offs are expected in the long term in almost all major areas of the economy (see Roco and Bainbridge 2001). Material properties and system functions are adjustable at the nanoscale, a function of size, shape, and pattern. For this reason, nanoscale sciences have created tremendous scientific interest. However, this alone would have not been sufficient to start a national research initiative. Nanotechnology has acquired national interest only in the last two years because of our increasing ability to manufacture products with structures in the nanometer range, as well as to change life and environmental ventures. This possibility promises a new industrial revolution leading to a high return on investments and to large benefits for society.

lii) Nanoscience and nanotechnology development are necessary contributing components in the converging advancements in S&E, including those originating in the digital revolution, modern biology, human medical and cognitive sciences, and collective behavior theory. The creation of "hardware" through control at the nanoscale is a necessary square in the mosaic. The future will be determined by the synergy of all six research areas, although in the short term, the synergy will rely on the information, nano- and bio- sciences starting from the molecular length scale. The developments as a result of the convergent technologies will be significant, but are difficult to predict because of discontinuities.

NNI was the result of systematic preparation. It was done with a similar rigor as used for a research project, and documents were prepared with the same rigor as for a journal article. In 1996-1998, there was an intellectual drive within various science and engineering communities to reach a consensus with regard to a broad definition of nanotechnology. In the interval 1997-2000, we prepared detailed materials answering several defining questions:

• What are the research directions in the next 10 years? (See Nanotechnology research directions. A vision for nanotechnology research and development in the next decade. Roco, Williams, and Alivisatos 1999/2000; http://nano.gov/nsetrpts.htm.)

• What is the national and international situation? (See Nanostructure science and technology, A worldwide study. Siegel et al. 1999; http://nano.gov/nsetrpts.htm.)

• What are the societal implications? (See Societal implications of nanoscience and nanotechnology. NSF 2000; http://nano.gov/nsetrpts.htm.)

• What are the vision and implementation plans for the government agencies? (See NNI, Budget request submitted by the president to Congress. NSTC 2000; http://nano.gov.)

• How do we inform and educate the public at large about nanotechnology? (See Nanotechnology. Reshaping the world atom by atom, NSTC/CT 1999; http://nano.gov/nsetrpts.htm.)

The approval process began with various S&E communities, and advanced with the positive recommendations of the Presidential Council of Science Advisory and Technology and of the Office of Management and Budget. The president proposed NNI on January 21, 2000, in a speech at the California Institute of Technology. The proposed budget was then approved by eight congressional committees, including those for basic science, defense, space, and health-related issues. Finally, the Congress appropriated $422 million for NNI in fiscal year 2001 (see Roco 2001a).

0 0

Post a comment