NBIC Education for the Twenty First Century

To enhance human performance most successfully, science and engineering education will have to evolve and, in some respects, radically reinvent itself. The knowledge taught will be based on concepts offered by nano, bio, info, and cognitive sciences, and these concepts will be introduced at the beginning of the K-12 teaching process. High-quality science education will be made available to the majority of students.

Special efforts must be made to stimulate communication between disciplines and develop in scientists the communication skills for doing so, so that conversations between them can be made focused and productive. Achievement of good interdisciplinary communication will synergistically enhance the knowledge and progress of all disciplines. Since mathematical tools represent a common language among and between disciplines, mathematics should be taught in greater depth and be a common focus among most scientific disciplines. At the same time, mathematics textbooks must use problems from science and engineering as examples.

Concerted efforts must be supported to write cross-disciplinary educational materials, using a variety of media at the university level that help with the language problems across traditional fields. A positive, inclusive social environment must be promoted that encourages creative growth of converging technologies. Improved pedagogy and accessibility are fundamental ingredients for the realization of converging technologies, incorporating the cultural differences that exist between students and between different technical fields.

At the college and graduate school levels, we may need a new program for multidisciplinary fellowships that would make it possible for students to move among professors and disciplines related to NBIC. A fellowship might travel with a student from one department or school to another and temporarily into a research integration or industry unit. Students might be allowed to define their own cross-disciplinary proposals, then funding would be provided directly to them rather than to an institution or mentor.

Depth in graduate studies is necessary and should not be compromised. However, if specific disciplines deliberately associate themselves with neighboring disciplines that use similar tools and models, breadth and a holistic perspective will come more easily to all.

Creating new educational curricula and methodologies will require problem-driven, system-oriented research and development. Cognitive scientists can analyze learning styles using NBIC and provide appropriate assistance. Better education is needed for teachers, including sufficiently funded research experiences and credit for in-service experiences in industry and research laboratories.

NBIC concepts should be introduced as early as possible. For example, basic concepts and problems of nanoscience could be taught in elementary schools. NBIC terms and concepts could be placed into childhood educational reading materials starting from the earliest levels. Virtual reality environments and websites could offer many kinds of exciting instructional materials. Practical demonstration kits could facilitate interactive learning. Research scientists could frequently visit schools to offer demonstrations and serve as role models.

NBIC courses and modules can be integrated to some extent into existing curricula and school settings, but novel alternatives will also have to be explored. Every way of making science and technology more interesting for young people would be helpful, such as using games to teach math and logic. To achieve these goals, it will be essential for educators, including members of school boards, curriculum development committees, and designers of standardized tests, to identify and encourage champions in K-12 schools. National standards for educational achievement will be indispensable tools to address the most challenging and promising NBIC areas.

In fifteen years, we anticipate that education will be based to a significant extent on unifying principles in science and technology that are easier to understand and more valuable for the learner. The new NBIC science content will have been introduced and be available in about 50 percent of the public schools. A variety of new pedagogical tools will be widely available, based on new learning methods, using learning-enhancing devices developed by neuroscience in cooperation with information technology. The process of learning at home or school, either individually or in groups, will be faster and better because of the new methods, tools, and processes.

0 0

Post a comment