Roles of Converging Technologies

The roles of NBIC technologies in the intrasomatic biofeedback vision are illustrated schematically in Figure C.16.

Figure C.16. Intrasomatic biofeedback.

Cognitive Science

Mainly used in psychophysiology as an applied technique, the principle of biofeedback goes back to the idea that nonvolitional, autonomic behavior can be instrumentally conditioned in a stimulus-reinforcement paradigm.

Traditional learning theory at the time of the discovery of the biofeedback principle held that an autonomic, involuntary response could be conditioned only through the principles of classical, or Pavlovian, conditioning. Instrumental, operant learning could be applied only to voluntary behavior and responses. However, in a series of experiments, Miller (1969) showed that autonomic behavior, like changes in blood pressure, could be operantly conditioned in rats (Hugdahl 1995, 40).

In the beginning of the biofeedback field, researchers, working with animals, experimented with more precisely accessing internal physiological phenomena to provide the signals and information representing the functions to be conditioned:

The experimental work on animals has developed a powerful technique for using instrumental learning to modify glandular and visceral responses. The improved training technique consists of moment-to-moment recording of the visceral function and immediate reward, at first, of very small changes in the desired direction and then of progressively larger ones. The success of this technique suggests that it should be able to produce therapeutic changes (Miller 1969, 443-444).

Miller identified critical characteristics that make a symptom (or physiological function) amenable to instrumental conditioning through biofeedback:

Such a procedure should be well worth trying on any symptom, functional or organic, that is under neural control, that can be continuously monitored by modern instrumentation, and for which a given direction of change is clearly indicated medically — for example, cardiac arrhythmias, spastic colitis, asthma, and those cases of high blood pressure that are not essential compensation for kidney damage (Miller 1969, 443-444).

The mechanism of neural control that would enable instrumental conditioning of basic molecular physiological processes has yet to be identified. Current understanding is limited to the notion that it generally involves a "bucket brigade" effect where willful cognitive influences in the cortex are handed down through the limbic system and on down into the hypothalamus, which disseminates the effect throughout the body via various neural and endocrine avenues.

Similarly, researchers in the field of psychoneuroimmunology have yet to find the exact biological mechanisms linking the brain and the immune system. Nevertheless, Robert Ader, one of the first to present evidence that immune responses could be modified by classical conditioning (Ader and Cohen 1975), states:

There are many psychological phenomena, and medical phenomena for that matter, for which we have not yet defined the precise mechanisms. It doesn't mean it's not a real phenomenon (Azar 1999).


Miller's (1969, 443-444) requirement that the physiological function be "continuously monitored by modern instrumentation" is now made possible by nanoscale biosensors, enabling the investigation of the instrumental conditioning of biomolecular phenomena.

Implantable sensors or "smart" patches will be developed that can monitor patients who are at risk for specific conditions. Such sensors might monitor, for example, blood chemistry, local electric signals, or pressures. The sensors would communicate with devices outside the body to report results, such as early signals that a tumor, heart damage, or infection is developing. Or these sensors could be incorporated into "closed loop" systems that would dispense a drug or other agent that would counteract the detected anomaly. For chronic conditions like diabetes, this would constitute a great leap forward. Nanotechnology will contribute critical technologies needed to make possible the development of these sensors and dispensers (NSTC 2000, 54, 55).

Another "closed loop system" that would "counteract the detected anomaly" is intrasomatic biofeedback training. In this case, remediation of a physiological anomaly or suboptimal condition would be achieved by self-regulation learned through instrumental conditioning, rather than by an external agent such as a drug or nanodevice.

Freitas (1999, section 4.1) describes "nanosensors that allow for medical nanodevices to monitor environmental states at three different operational levels," including "local and global somatic states (inside the human body)," and cellular bioscanning:

The goal of cellular bioscanning is the noninvasive and non-destructive in vivo examination of interior biological structures. One of the most common nanomedical sensor tasks is the scanning of cellular and subcellular structures. Such tasks may include localization and examination of cytoplasmic and nuclear membranes, as well as the identification and diagnostic measurement of cellular contents including organelles and other natural molecular devices, cytoskeletal structures, biochemical composition and the kinetics of the cytoplasm (Freitas 1999, section 4.8).

The function of "communicating outside the body to report results" (NSTC 2000, 54, 55) is essential for an intrasomatic biofeedback application. Freitas (1999) describes a similar function for nanorobots:

In many applications, in vivo medical nanodevices may need to communicate information directly to the user or patient. This capability is crucial in providing feedback to establish stable and reliable autogenous command and control systems (Chapter 12). Outmessaging from nanorobot to the patient or user requires the nanodevice to manipulate a sensory channel that is consciously available to human perception, which manipulation can then be properly interpreted by the patient as a message.

Sensory channels available for such communication include sight, audition, gustation and olfaction, kinesthesia, and somesthetic sensory channels such as pressure, pain, and temperature (Freitas 1999, section 7.4.6).

In this application, "outmessaging" is described as enabling user control of a nanorobot; for intrasomatic biofeedback, this function would provide the information that acts as a reinforcer for conditioning changes in cellular and molecular processes (Figure C.16).

How To Bolster Your Immune System

How To Bolster Your Immune System

All Natural Immune Boosters Proven To Fight Infection, Disease And More. Discover A Natural, Safe Effective Way To Boost Your Immune System Using Ingredients From Your Kitchen Cupboard. The only common sense, no holds barred guide to hit the market today no gimmicks, no pills, just old fashioned common sense remedies to cure colds, influenza, viral infections and more.

Get My Free Audio Book

Post a comment