Sensory Correction and Replacement

In certain cases of sensory loss, sensory correction and replacement are alternatives to sensory substitution. Sensory correction is a way to remedy sensory loss prior to transduction, the stage at which light or sound is converted into neural activity (Figure C.7). Optical correction, such as eyeglasses and contact lenses, and surgical correction, such as radial keratotomy (RK) and laser in situ keratomileusis (LASIK), have been employed over the years to correct for refractive errors in the optical media prior to the retina. For more serious deformations of the optical media, surgery has been used to restore vision (Valvo 1971). Likewise, hearing aids have long been used to correct for conductive inefficiencies prior to the cochlea. Because our interest is in more serious forms of sensory loss that cannot be overcome with such corrective measures, the remainder of this section will focus on sensory replacement using bionic devices.

In the case of deafness, tremendous progress has already been made with the cochlear implant, which involves replacing much of the function of the cochlea with direct electrical stimulation of the auditory nerve (Niparko 2000; Waltzman and Cohen 2000). In the case of blindness, there are two primary approaches to remedying blindness due to sensorineural loss: retinal and cortical prostheses. A retinal prosthesis involves electrically stimulating retinal neurons beyond the receptor layer with signals from a video camera (e.g., Humayun and de Juan 1998); it is feasible when the visual pathway beyond the receptors is intact. A cortical prosthesis involves direct stimulation of visual cortex with input driven by a video camera (e.g., Normann 1995). Both types of prosthesis present enormous technical challenges in terms of implanting the stimulator array, power delivery, avoidance of infection, and maintaining long-term effectiveness of the stimulator array.

There are two primary advantages of retinal implants over cortical implants. The first is that in retinal implants, the sensor array will move about within the mobile eye, thus maintaining the normal relationship between visual sensing and eye movements, as regulated by the eye muscle control system. The second is that in retinal implants, connectivity with the multiple projection centers of the brain, like primary visual cortex and superior colliculus, is maintained without the need for implants at multiple sites. Cortical implants, on the other hand, are technically more feasible (like the delivery of electrical power), and are the only form of treatment for blindness due to functional losses distal to visual cortex. For a discussion of other pros and cons of retinal and cortical prostheses, visit the Web site ( of Professor Richard Normann of the University of Utah.

0 0

Post a comment