Transforming Strategy

A Technical Challenge

Early on, Kamiya (1971) specified the requirements for the biofeedback training technique, and these have not changed substantially:

• The targeted physiological function must be monitored in real time.

• Information about the function must be presented to the trainee so that the trainee perceives changes in the parameter immediately.

• The feedback information should also serve to motivate the trainee to attend to the training task.

The challenges for the fields of nanotechnology, biotechnology, information technology, and cognitive science (NBIC) in creating the technology to enable internally targeted physiological self-regulation technology can be differentiated according to the disparities between (1) the time response of existing physiometric technology, (2) the time course of the targeted physiological processes, and (3) the requirements for feedback immediacy in the biofeedback paradigm. Realtime sensing is essential to make the processes available for display and attaching sensory feedback consequences to detected changes.

The physiological processes most readily amenable to biofeedback self-regulation are those where the internal training targets are available in real time with current or emerging technologies, such as electrical (e.g., brainwave) and hydraulic (e.g., blood flow) physiological signals.

Instruments using microdialysis, microflow, and biosensor technologies to deliver blood chemistry data such as glucose and lactate in real time (European Commission 2001) will need to reduce test cycle time from minutes to seconds to meet the feedback immediacy criterion required for biofeedback training. Even then, it may be discovered that time delays between the initiation of the production of these chemicals and their appearance in the bloodstream require that signals from upstream stages in the formation process are more appropriate targets for feedback in the self-regulation training loop.

Flow cytometry is an example of an offline, non-realtime technology, in this case for measuring certain physical and chemical characteristics, such as size, shape, and internal complexity, of cells or particles as they travel in suspension one by one past a sensing point. For the blood cell formation process that controls these characteristics of cells, hematopoiesis, to become a candidate for physiological self-regulation training will require advances in molecular-scale technology. These advances will probably need to occur in the upstream monitoring of molecular or biosignal (hormonal, antibody, etc.) precursors of the blood cell formation process, bringing tracking of the process into the realtime scale required for feedback immediacy.

Internal nanosensors will similarly solve the time-response problem that has prevented the utilization of brain functional monitoring and imaging in biofeedback.

Thus, current functional imaging methods are not in real time with brain activity; they are too slow by a factor of 100 or more. The big advance will be to develop functional imaging techniques that show us — as it is happening — how various areas of the brain interact. ... Do not ask me what the basis of this new imaging will be. A combination of electrical recording and changes in some other brain properties perhaps? (McKhann 2001, 90)

The precision and speed of medical nanodevices is so great that they can provide a surfeit of detailed diagnostic information well beyond that which is normally needed in classical medicine for a complete analysis of somatic status (Freitas 1999, section 4.8).

Enabling Collaborations

The collaboration of key institutions will be necessary to expedite the development of the intrasomatic biofeedback vision. Potentially enabling joint efforts are already in place (National Aeronautics and Space Administration [NASA] and the National Cancer Institute [NCI] 2002):

NASA and the National Cancer Institute (NCI) cosponsor a new joint research program entitled Fundamental Technologies for the Development of Biomolecular Sensors. The goal of this program is to develop biomolecular sensors that will revolutionize the practice of medicine on Earth and in space.

The Biomolecular Systems Research Program (BSRP) administrates the NASA element of the new program, while the Unconventional Innovations Program (UIP) does so for NCI.

NASA and NCI are jointly seeking innovations in fundamental technologies that will support the development of minimally invasive biomolecular sensor systems that can measure, analyze, and manipulate molecular processes in the living body. (National Aeronautics and Space Administration [NASA] 2002)

One of the purposes that this program is designed to serve is NASA's requirement "for diagnosis and treatment of injury, illness, and emerging pathologies in astronauts during long duration space missions . Breakthrough technology is needed to move clinical care from the ground to the venue of long duration space flight ... Thus, the space flight clinical care system must be autonomous ..." (NASA/NCI 2001). Intrasomatic biofeedback's potential for self-remediation of physiological changes that threaten health or performance would be useful in many remote settings.

The nanotechnology, biotechnology, and information technology (NBI) components of the NASA/NCI joint project are specified in a NASA News Release:

The ability to identify changes such as protein expression or gene expression that will develop into cancer at a later date may enable scientists to develop therapies to attack these cells before the disease spreads. "With molecular technologies, we may be able to understand the molecular signatures within a cell using the fusion of biotechnology, nanotechnology and information technology," [John] Hines [NASA Biomolecular Physics and Chemistry Program Manager] said.

[NASA] Ames [Research Center] will focus on six key areas in molecular and cellular biology and associated technologies. Biomolecular sensors may some day be able to kill tumor cells or provide targeted delivery of medication. Molecular imaging may help scientists understand how genes are expressed and how they control cells. Developments in signal amplification could make monitoring and measurement of target molecules easier. Biosignatures — identification of signatures of life — offer the possibility of distinguishing cancerous cells from healthy cells. Information processing (bioinformatics) will use pattern recognition and modeling of biological behavior and processes to assess physiological conditions. Finally, molecular-based sensors and instrumentation systems will provide an invaluable aid to meeting NASA and NCI objectives (Hutchison 2001).

The NASA/NCI project is designed to "develop and study nanoscale (one-billionth of a meter) biomedical sensors that can detect changes at the cellular and molecular level and communicate irregularities to a device outside the body" (Brown 2001). This communication aspect of the technology will make possible the external sensory display of internal functioning that is essential to the intrasomatic biofeedback vision (Figure C.16).

Collaborations such as this NASA/NCI project provide the NBI components of the intrasomatic biofeedback vision. The participation of organizations devoted to the development and application of cognitive science (C), such as those specified in Figure C.17, would complete the set of disciplines necessary to realize the vision.

Biofeedback Mastery

Biofeedback Mastery

Have you ever wondered what Biofeedback is all about? Uncover these unique information on Biofeedback! Are you in constant pain? Do you wish you could ever just find some relief? If so, you are not alone. Relieving chronic pain can be difficult and frustrating.

Get My Free Ebook

Post a comment