Vision in Nanotechnology How to Achieve it

One virtue of multidisciplinary research is the introduction of more comprehensive goals that may be achieved by several interactive research programs. A statement of these goals, along with the consequences, is frequently referred to as "vision." Occasionally, a research group sets out to conquer the larger goals with approaches that worked well with the previous in-depth methodology alone. That is, they pursue a larger goal with limited knowledge of the full picture. With the urgent need for faculty to obtain research funds, less time is available to examine the full picture associated with some of these larger goals. Some directions chosen by groups with a limited perspective may ignore the wisdom of more experienced communities. This problem is more severe when goals include "legions" of researchers from many disciplines, such as those currently being pursued by the computer industry.

Thus, the call for vision has generated its own unease in the midst of these transformations. Articulating a vision is tricky. As Yogi Berra stated, "It's tough to make predictions, especially about the future" ( This difficulty has been exacerbated by the introduction of virtual reality. Images can be readily drawn that conjure phenomena totally inconsistent with the world of reality. When applied to apparent scientific problems, misperceptions may result in groups expounding concepts they do not understand; perceptions may even violate the usual laws of physics (or related constraints recognized through years of experience).

Nevertheless, vision statements are important for the research world, and Congressional appropriations for research are increasingly tied to (1) a linear extrapolation of past success, and (2) visions that portend significant impact for the nation. The concepts associated with nanotechnology support these criteria in many ways. Most notably, enhanced electronics, enhanced medical diagnostics, improved medical procedures, and new materials are major areas that meet these two criteria. Stating a goal, pursuing it, and reaching it generate credibility. This is achieved best by those well versed in scientific principals and methods and the ramifications of potential paths to be pursued. It is not achieved by visionaries who appear to understand the world only through the images of virtual reality, without the sound knowledge of the basic principals drawn from the experimental world and experience with the perversity of Mother Nature. In addition, although serendipity has its place, it is not to be depended upon for productivity in research or for setting goals at the initiation of a program. The plethora of paths to follow in research exceeds by far the number of researchers. Consequently, a judicious choice of directions is essential, and the process of choosing these goals is vitally important to the health of the enterprise.

In light of the controversy surrounding discussion of the hazards of the so-called "self-replicating nanobots" (Tolles 2001, 173), a few words of caution seem in order. The nanotechnology community should show some restraint when releasing articles to the press about any major impact on an already established field. Setting scientific goals that may be achieved within a career (or within a decade) seems preferable to choosing goals that appear incompatible with the behavior of the physical world. The hazards of the so-called "self-replicating nanobots" seem to have already generated far more discussion than they warrant (Tolles 2001). Visions of ultra-fast and powerful computers the size of poppy seeds conjure unrealistic expectations, feeding further the fears that the products of our creation may be smarter than we are, and that we may sow the seeds of our own destruction. "The rub in exploring the borderlands is finding that balance between being open-minded enough to accept radical new ideas but not so open-minded that your brains fall out" (Shermer 2001, 29). We must recognize that it is difficult to predict the future; in particular, there is no reason to raise hopes for a device or a phenomenon that violates the basic laws of physics and chemistry. Another perspective: "... the burden of proof is not on those who know how to make chips with 107 transistors and connect them together with millions of wires, it is up to those who show something in a laboratory to prove that it is better" (Keyes 2001b).

0 0

Post a comment