Foreword

by R. E. Smalley, Chemistry Nobel Lauveate 1996

Since the discovery of the fullerenes in 1985 my research group and I have had the privilege of watching from a central location the worldwide scientific community at work in one of its most creative, penetrating, self-correcting, and divergent periods of the last century. In his recent book, "The Transparent Society", David Brin discusses the virtues of an open, information rich society in which individuals are free to knowledgeably criticize each other, to compete, to test themselves and their ideas in a free market place, and thereby help evolve a higher level of the social organism. He points out that modern science has long functioned in this mode, and argues that this open criticism and appeal to experiment has been the keystone of its success. This new volume, Carbon Nanotubes, is a wonderful example of this process at work.

Here you will find a summary of the current state of knowledge in this explosively growing field. You will see a level of creativity, breadth and depth of understanding that I feel confident is beyond the capability of any single human brain to achieve in a lifetime of thought and experiment. But many fine brains working independently in the open society of science have done it very well indeed, and in a very short time.

While the level of understanding contained in this volume is immense, it is clear to most of us working in this field that we have only just begun. The potential is vast. Here we have what is almost certainly the strongest, stiffest, toughest molecule that can ever be produced, the best possible molecular conductor of both heat and electricity. In one sense the carbon (fullerene) nanotube is a new man-made polymer to follow on from nylon, polypropylene, and Kevlar. In another, it is a new "graphite" fiber, but now with the ultimate possible strength. In yet another, it is a new species in organic chemistry, and potentially in molecular biology as well, a carbon molecule with the almost alien property of electrical conductivity, and super-steel strength.

Can it be produced in megatons? Can it be spun into continuous fibers?

Can it grown in organized arrays or as a perfect single crystal? Can it be sorted by diameter and chirality? Can a single tube be cloned? Can it be grown enzymatically?

Can it be assembled by the molecular machinery of living cells?

Can it be used to make nanoelectronic devices, nanomechanical memories, nano machines, ...?

Can it be used to wire a brain?

There is no way of telling at this point. Certainly for many researchers, the best, most exciting days of discovery in this field are still ahead. For the rest of us, it will be entertaining just to sit back and watch the worldwide organism of science at work. Hold on to your seats! Watch the future unfold.

Houston, Texas January 2001

Richard E. Smalley

0 0

Post a comment