References

1. Dravid, V.P.; Lin, X.; Wang, Y.; Lee, A.; Ketterson, J.B.; Chang, R.P.H. Buckytubes and derivatives—their growth and implications for buckyball formation. Science 1993, 259, 1601-1604.

2. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.

3. Terrones, M.; Hsu, W.K.; Kroto, H.W.; Walton, D.R.M. Nanotubes: a revolution in materials science and electronics. Topics Curr. Chem. 1999,199, 189-234.

4. Rao, C.N.R.; Satishkumar, B.C.; Govindaraj, A.; Nath, M. Nanotubes. Chem. Phys. Chem. 2001, 2, 78-105.

5. de Jong, K.P.; Geus, J.W. Carbon nanofibers: catalytic synthesis and applications. Catal. Rev. Sci. Eng. 2000, 42, 481-510.

6. Iijima, S.; Ichihashi, T.; Ando, Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 1992, 356, 776-778.

7. Govindaraj, A.; Sen, R.; Nagaraju, B.V.; Rao, C.N.R. Carbon nanospheres and tubules obtained by the pyrolysis of hydrocarbons. Philos. Mag. Lett. 1997, 76, 363-367.

8. Park, C.; Engel, E.S.; Crowe, A.; Gilbert, T.R.; Rodriguez, N.M. Use of carbon nanofibers in the removal of organic solvents from water. Langmuir 2000, 16, 8050-8056.

9. Keane, M.A. Advances in greener separation processes—case study: recovery of chlorinated aromatic compounds. Green Chem. 2003, 5, 309-317.

10. Dillon, A.C.; Jones, K.M.; Bekkedahl, T.A.; Kiang, C.H.; Bethune, D.S.; Heben, M.J. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, 377-379.

11. Chen, P.; Wu, X.; Lin, J.; Tan, K.L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 1999, 285, 91-93.

12. Rao, C.N.R. Novel materials, materials design and synthetic strategies: Recent advances and new directions. J. Mater. Chem. 1999, 9, 1-14.

13. Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678-680.

14. Sandler, J.; Shaffer, M.S.P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A.H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967-5971.

15. Haller, G.L.; Resasco, D.E. Metal support interaction— group VIII metals and reducible oxides. Adv. Catal. 1989, 36, 173-235.

16. Tauster, S.J.; Fung, S.C.; Baker, R.T.K.; Horsley, J.A. Strong interactions in supported metal catalysts. Science 1981, 211, 1121-1125.

17. Klug, H.P.; Alexander, L.E. X-Ray Diffraction Procedures; Wiley: New York, 1974.

18. Ajayan, P.M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787-1799.

19. Ebbesen, T.W. Carbon Nanotubes, Preparation and Properties; CRC Press: Boca Raton, FL, 1997.

20. Nhut, J.-M.; Pesant, L.; Tessonnier, J.-P.; Wine, G.; Guille, J.; Pham-Huu, C.; Ledoux, M.-J. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Appl. Catal., A Gen 2003, 254, 345-363.

21. Park, C.; Patterson, P.M.; Keane, M.A. Growth of ordered filamentous carbon from the surface of supported metal catalysts. Curr. Topic. Colloid Interf. Sci. 2002, 5, 93-123.

22. Rodriguez, N.M. A review of catalytically grown carbon nanofibers. J. Mater. Res. 1993, 8, 3233-3250.

23. Anderson, P.E.; Rodriguez, N.M. Growth of graphite nanofibers from the decomposition of CO/H2 over silica-supported iron-nickel particles. J. Mater. Res. 1999, 14, 2912-2921.

24. Zaikovskii, V.I.; Chesnokov, V.V.; Buyanov, R.A. Symmetrical spiral forms of filamentous carbon formed from butadiene-1,3 on the Ni-Cu/MgO catalyst: regularities and mechanism of growth. Kinet. Catal. 1999, 40, 552-555.

25. Park, C.; Keane, M.A. Catalyst support effects in the growth of filamentous carbon from the decomposition of ethylene over nickel. J. Catal. 2004, 221, 386-399.

26. Pham-Huu, C.; Keller, N.; Ehret, G.; Charbonniere, L.J.; Ziessel, R.; Ledoux, M.J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions: an active and selective catalyst for hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. J. Mol. Catal., A Chem. 2001, 170, 155-163.

27. Hatta, N.; Murata, K. Very long graphitic nano-tubules synthesized by plasma decomposition of benzene. Chem. Phys. Lett. 1994, 217, 398-402.

28. Ebbesen, T.W.; Ajayan, P.M. Large scale synthesis of nanotubes. Nature 1992, 358, 220-222.

29. Bacon, R. Growth, structure and properties of graphite whiskers. J. Appl. Phys. 1960, 31, 284-290.

30. Kratsmer, W.; Lamb, L.D.; Fortiropolous, K.; Huffman, D.R. Solid C60: a new form of carbon. Nature 1990, 347, 354-358.

31. Terrones, M.; Hsu, W.K.; Kroto, H.W.; Walton, D.R.M. Fullerenes and Related Structures; Springer: New York, 1999.

32. Colomer, J.-F.; Piedigrosso, P.; Willems, I.; Journet, C.; Bermei, P.; van Tendeloo, G.V.; Fonseca, A.; Nagy, J.B. Purification of catalytically produced multi-wall nanotubes. J. Chem. Soc., Faraday Trans. 1998, 94, 3753-3758.

33. Richter, H.; Hernadi, K.; Caudano, R.; Fonseca, A.; Migeon, H.-N.; Nagy, J.B.; Schneider, S.; Vandooren, J.; Van Tiggelen, P.-J. Formation of nanotubes in low pressure hydrocarbon flames. Carbon 1996, 34, 427-429.

34. Muller, T.E.; Reid, D.G.; Hsu, W.K.; Hare, J.P.; Kroto, H.W.; Walton, D.R.M. Synthesis of nanotubes via catalytic pyrolysis of acetylene: A SEM study. Carbon 1997, 35, 951-966.

35. Figueiredo, J.L.; Bernardo, C.A.; Chludzinski, J.J.; Baker, R.T.K. The reversibility of filamentous carbon growth and gasification. J. Catal. 1988, 110, 127-138.

36. Kock, A.J.H.M.; de Bokx, P.K.; Boellaard, E.; Klop, 52. W.; Geus, J.W. The formation of filamentous carbon on iron and nickel catalysts: Mechanism. J. Catal. 1985, 96, 468-480. 53.

37. Chesnakov, V.V.; Zarkovskii, V.I.; Buyanov, R.A.; Molchanov, V.V.; Plyasova, L.M. The formation of morphological structures of carbon from hydrocarbons 54. on nickel-containing catalysts. Kinet. Catal. 1994, 35, 130-135.

38. Kim, M.S.; Rodriguez, N.M.; Baker, R.T.K. The role of interfacial phenomena on the structure of carbon 55. deposits. J. Catal. 1992, 134, 253-268.

39. Tomishige, K.; Chen, Y.; Fujimoto, K. Studies on carbon deposition in CO2 reforming of CH4 over 56. nickel-magnesia solid solution catalysts. J. Catal.

40. Park, C.; Baker, R.T.K. Carbon deposition on iron- 57. nickel during interaction with ethylene-hydrogen mixtures. J. Catal. 1998, 179, 361-374.

41. Willems, I.; Konya, Z.; Colomer, J.-F.; van Tendeloo, 58. G.; Nagarju, N.; Fonseca, A.; Nagy, J.B. Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett. 2000, 317, 71-76.

42. Cherukuri, L.D.; Guang, Y.; Keane, M.A. Catalytic 59. growth of structured carbon via the decomposition of chlorobenzene over Ni/SiO2. Topics Catal. 2004, 29, 119-128.

43. Nolan, P.E.; Lynch, D.C.; Cutler, A.H. Catalytic 60. disproportionation of CO in the absence of hydrogen— encapsulating shell carbon formation. Carbon 1994, 32, 477-483.

44. Owens, W.T.; Rodriguez, N.M.; Baker, R.T.K. Carbon 61. filament growth on platinum catalysts. J. Phys. Chem.

1992, 96, 5048-5053.

45. Park, C.; Keane, M.A. Filamentous carbon growth 62. on nickel/silica: potassium and bromine as catalyst promoters. Chem. Phys. Chem. 2001, 2, 733-741.

46. Yang, R.T.; Chen, J.P. Mechanism of carbon filament 63. growth on metal catalysts. J. Catal. 1989, 115, 52-64.

47. Alstrup, I. A new model explaining carbon filament 64. growth on nickel, iron and Ni-Cu alloy catalysts. J.

48. Pham-Huu, C.; Keller, N.; Charbonniere, L.J.; Ziessel,

R.; Ledoux, M.J. Carbon nanofiber supported pal- 65. ladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds. J. Chem. Soc., Chem. Commun. 2000, 18, 1871-1872.

49. Keane, M.A. Recovery of chlorinated organic compounds by adsorption on activated carbon and 66. zeolite surfaces. In Encyclopedia of Surface and Colloid Science; Hubbard, A.T., Ed.; Marcel Dekker:

New York, 2002; 4479-4485.

50. Park, C.; Keane, M.A. Effectiveness of carbon nano- 67. fibers in the removal of phenol based organics from aqueous media. In Interfacial Applications in Environmental Engineering; Keane, M.A., Ed.; Marcel Dekker:

New York, 2003; 165-192.

51. Serp, P.; Corrias, M.; Kalck, P. Carbon nanotubes and 68. nanofibers in catalysis. Appl. Catal., A Gen. 2003, 253, 337-358.

Park, C.; Keane, M.A. Catalyst support effects:

gas-phase hydrogenation of phenol over palladium. J.

Colloid Interface Sci. 2003, 266, 183-194.

Gao, R.; Tan, C.D.; Baker, R.T.K. Ethylene hydrofor-

mylation on graphite nanofiber supported rhodium catalysts. Catal. Today 2001, 65, 19-29.

Park, C.; Baker, R.T.K. Catalytic behavior of graphite nanofiber supported nickel particles: the influence of the nanofiber structure. J. Phys. Chem. B 1998, 102,

Solar Power

Solar Power

Start Saving On Your Electricity Bills Using The Power of the Sun And Other Natural Resources!

Get My Free Ebook


Post a comment