Arrays of optical traps

A sophisticated scheme of interfering focused laser light beams has allowed creation and manipulation of 3D optically trapped structures [35]. Figure 3.13 schematically shows the nature of this optical trap and some of the configurations of dielectric spheres that have been stabilized. In Fig 3.13 (A) a detail schematic of the waist of the four-fold beam, which is shown stabilizing an array of eight dielectric spheres. (B) shows six other arrangements of identical dielectric spheres which were stably trapped in this device [35].

These traps are generally useful for micrometer sized particles, as far as individual positioning is concerned. Many particles can be loaded into such traps, encouraging them to condense in a self-organizing fashion. Arrays of more than four traps seem possible, based upon splitting a coherent light beam up into parallel beams.

Figure 3:13: Four-fold rotating optical trap stabilizes 3D arrays. [35]

References

[2] A. Einstein, Annalen der Physik 17, 132(1905).

[4] L. Pauling and E. B. Wilson, Jr., Introduction to Quantum Mechanics with applications to Chemistry, (Dover, Mineola, N.Y., 1985).

[5] F. L. Pilar, Elementary Quantum Chemistry, (Dover, Mineola, N.Y., 2001).

[6] Reprinted with permission from L. Mahade-van and P. Matsudaira, Science 288,

95 (2000). Copyright 2000 AAAS.

[7] H. Stebbings and }. S. Hyams, Cell Motility, (Longman, London, 1979).

[8] Reprinted with permission from R. D. Vale and R. A. Milligan, Science 288, 88 (2000). Copyright 2000 AAAS.

[9] V. C. Abraham, V. Krishnamurthi, D. L. Taylor, and F. Lanni, Biophys. J. 77, 1721 (1999).

[10] M. Dogterom and B. Yurke, Science 278, 856(1997).

[11] J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Treager, and D. C. White, Nature 378, 209 (1995).

[14] R. Niklas, Annu. Rev. Biophys. Biophys. Chem. 17, 431(1988).

[16] R. M. Berry and J. P. Armitage, Adv. Microb. Physiol. 41, 291 (1999).

[17] J. Tilney and S. Inoue, J. Cell. Biol. 93, 820(1982).

[18] A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Science 300, 2061 (2003).

[19] J.E. Molloy and C. Veigel, Science 300, 2045 (2003).

[20] Reprinted with permission from

Y. Sambongi, U. Iko, M. Tanabe, H. Omote, A. Iwamoto-Kihara, I. Ueda, T. Yanagida, Y. Wada, and M. Futai, Science 286, 1722 (1999). Copyright 1999 AAAS.

[21] Reprinted with permission from

A. G. Olkhovets, H. G. Craighead, and C. D. Montemagno, Science 290, 1555 (2000). Copyright 2000 AAAS.

[22] Reprinted with permission from Nature: M. Schumacher and J. P.Adelman, Nature 417, 501 (2002). Copyright 2002, Macmillan Publishers Ltd.

B. T. Chait, and R. MacKinnon, Nature 417, 515 (2002).

B. T. Chait, and R. MacKinnon, Nature 417, 523 (2002).

[25] A. L. Hodgkin and A. F. Huxley, J. Physiol. (London) 117, 500 (1952).

[26] Reprinted with permission from Nature:

Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B. T. Chait, and R. MacKinnon, Nature 423, 33 (2003). Copyright 2003, Macmillan Publishers Ltd.

[27] Y. Jiang, V. Ruta, J. Chen, A. Lee, and R. MacKinnon, Nature 423, 42 (2003).

[28] Courtesy Martin A. Schmidt, Microsystems Technology Laboratories at Massachusetts Institute of Technology.

[29] Courtesy IBM Research, Almaden Research Center. Unauthorized use not permitted.

[30] Courtesy IBM Research, Almaden Research Center. Unauthorized use not permitted.

[31] J. C. Angus, U. Landau, and G. M. White-sides, Science 281,1143 (1998).

[32] J. C. Angus, U. Landau, S. H. Liao, and M. C. Yang, J. Electrochem. Soc. 133, 1152(1986).

[33] Reprinted with permission from R. J. Jack-man, S. T. Brittain, A. Adams, M. G. Prentiss and G. M. Whitesides, Science 280, 2089-2091 (1998). Copyright 1998 AAAS.

[34] Reprinted with permission from

M. D. Wang et al, Science 282, 902-907 (1998). Copyright 1998 AAAS.

[35] Reprinted with permission from M. P. Mac-Donald, L. Paterson, K. Volke-Sepulveda,

J. Arit, W. Sibbett, and K. Dholakia, Science 296, 1101-1103 (2002). Copyright 2002 AAAS.

0 0

Post a comment