A Matlab Codes

The MATLAB codes for the toy models can also be obtained at www.nanohub.purdue.edu.

14.7.A.1 Discrete One-Level Model

E0 = - 5 . 5; E f = -5;gam1 = 0 .2 ; gam2 = 0.2;U = 1 ; %Constants (all MKS, except energy which is in eV) hbar = 1.06e-34;q = 1.6e-19;IE = (2*q*q)/hbar;kT = .025; % Bias (calculate 101 voltage points in [-4 4] range) nV = 101;VV = linspace(-4,4,nV);dV = VV(2)-VV(1); N0 = 2/ (1 + exp((E0-Ef)/kT) ) ; for iV = 1:nV% Voltage loop UU = 0;dU = 1;

V = VV(iV);mu1 = Ef-(V/2);mu2 = Ef+(V/2); while dU>1e-6%SCF E = E0+UU;

f1 = 1/(1+exp((E-mu1)/kT));f2 = 1/(1+exp((E-mu2)/kT)); NN = 2* ( (gam1*f1) + (gam2*f2))/(gam1 + gam2) ; % Charge Uold = UU;UU = Uold+(.05*((U*(NN-N0))-Uold)); dU = abs (UU-Uold) ; [V UU dU] ;

end curr = IE*gam1*gam2 *(f2-f1)/(gam1+gam2) ; II (iV) = curr ;N (iV) = NN; [V NN] ;

G = diff(II)/dV;GG = [G(1) G] ; % Conductance h = plot(VV,II*10^6,'k');% Plot I-V

14.7.A.2 Discrete Two-Level Model

Ef = -5;E0 = [-5.5 -1.5];gam1 = [.2 ,2];gam2 = [.2 .2];U = 1*[1 1;1 1];

% Constants (all MKS, except energy which is in eV) hbar = 1.06e-34;q = 1.6e-19;IE = (2*q*q)/hbar;kT = .025; n0 = 2 . / (1 + exp( (E0-Ef) ./kT) ) ;

nV = 101; VV = linspace (-6 , 6 , nV) ; dV = VV (2 )-VV (1) ;Usc = 0; for iV = 1 : nV dU = 1;

V = VV (iV) ; mu1 = Ef+(V/2);mu2 = Ef-(V/2); while dU>1e-6

f1 = 1./(1 + exp( (E-mu1) ./kT) );f2 = 1./(1 + exp( (E-mu2)./kT) ) ;

Uold = Us c;Us c = Uold+(.1*(( (n-n0)*U')-Uold) ) ;

G = diff (II)/dV;GG = [G(1) G] ; h = plot(VV,II) ; % Plot I-V

14.7.A.3 Broadened One-Level Model

% Toy model, restricted solution with broadening % Inputs (all in eV)

E0 = - 5 . 5; E f = -5;gam1 = 0 . 2; gam2 = 0.2;U = 1.0; % Constants (all MKS, except energy which is in eV) hbar = 1.06e-34;q = 1.6e-19;IE = (2*q*q)/hbar;kT = .025; % Bias (calculate 101 voltage points in [-4 4] range) nV = 101;VV = linspace(-4,4,nV);dV = VV(2)-VV(1); N0 = 2/(1 + exp((E0-Ef)/kT) ) ; for iV = 1:nV% Voltage loop UU = 0;dU = 1;

nE = 400;% Numerical integration over 200 points id = diag(eye(nE)) ' ;

EE = linspace(-10,0,nE) ;dE = EE(2)-EE(1); f1 = 1./(1+exp((EE-id*mu1)/kT)); f 2 = 1./(1 + exp( (EE-id*mu2)/kT)) ; while dU>1e-4% SCF E = E0+UU;

NN = 2*sum(g.*conj(g) .*(gam1* f1+gam2* f2))/(2*pi)*dE; Uold = UU;UU = Uold+(.2*((U*(NN-N0))-Uold)); dU = abs (UU-Uold) ; [V UU dU] ;

end curr = IE*gam1*gam2 *sum((f2-f1) .*g.*conj(g))/(2 *pi)*dE; II (iV) = real (curr) ;N(iV) = NN; [V NN curr E mu1 mu2];

G = diff(II)/dV;GG = [G(1) G] ; % Conductance h = plot(VV,II,'.'); Plot I-V

14.7.A.4 Unrestricted Discrete One-Level Model

% Toy model unrestricted solution % Inputs (all in eV)

E0 = - 5 . 5 ; E f = -5;gam1 = 0 .2 ; gam2 = 0.2;U = 1 ; % Constants (all MKS, except energy which is in eV) hbar = 1.06e-34;q = 1.6e-19;IE = (q*q)/hbar;kT = .025; % Bias (calculate 101 voltage points in [-4 4] range) nV = 101;VV = linspace(-4,4,nV);dV = VV(2)-VV(1); N0 = 1/(1+exp((E0-Ef)/kT)); for iV = 1:nV% Voltage loop

V = VV(iV);mu1 = Ef-(V/2);mu2 = Ef+(V/2); while (dU1+dU2)>1e-6% SCF

f11 = 1/(1 + exp( (E1-mu1)/kT) ) ; f21 = 1/( 1 + exp( (E1-mu2)/kT) ) ; f 12 = 1/(1 + exp( (E2-mu1)/kT) ) ;f22 = 1/(1 + exp( (E2-mu2)/kT) ) ; NN1 = ((gam1*f12)+(gam2*f22))/(gam1+gam2); NN2 = ((gam1*f11)+(gam2*f21))/(gam1+gam2); Uold1 = U1;Uold2 = U2 ;

U1 = Uold1+(.05*( (2 *U*(NN1-N0))-Uold1)) ; U2 = Uold2+(.05*( (2 *U*(NN2-N0))-Uold2)) ; dU1 = abs (U1-Uold1) ;dU2 = abs (U2-Uold2 ) ;

end curr1 = IE*gam1*gam2*(f21-f11)/(gam1+gam2); curr2 = IE*gam1*gam2*(f22-f12)/(gam1+gam2); (iV) = curr1 ; I2 (iV) = curr2 ; N1(iV) = NN1;N2(iV) = NN2 ; [V NN1 NN2 ] ;

G = diff(I1 + I2)/dV;GG = [G(1) G] ; % Conductance h = plot(VV,I1 + I2, '-x) ; Plot I-V

14.7.A.5 Unrestricted Broadened One-Level Model

% Toy model, unrestricted solution with broadening % Inputs (all in eV)

E0 = - 5 . 5 ; E f = -5;gam1 = 0 . 2 ; gam2 = 0.2;U = 1; % Constants (all MKS, except energy which is in eV) hbar = 1.06e-34;q = 1.6e-19;IE = (q*q)/hbar;kT = .025; % Bias (calculate 101 voltage points in [-4 4] range) nV = 101;VV = linspace(-4,4,nV);dV = VV(2)-VV(1); N0 = 1/(1+exp((E0-Ef)/kT));

nE = 200;% Numerical integration over 200 points id = diag(eye(nE))';

EE = linspace(-9,-1,nE);dE = EE(2)-EE(1); for iV = 1:nV% Voltage loop

V = VV(iV);mu1 = Ef-(V/2);mu2 = Ef+(V/2); f1 = 1./(1+exp((EE-id*mu1)/kT));

f 2 = 1./(1 + exp( (EE-id*mu2)/kT)) ; while (dU1+dU2)>1e-3% SCF

NN1 = sum(g1.*conj(g1) .*(gam1*f1 + gam2 *f2))/(2 *pi)*dE; NN2 = sum(g2.*conj(g2) .*(gam1*f1 + gam2 *f2))/(2 *pi)*dE; Uold1 = U1;Uold2 = U2 ;

U1 = Uold1+(.2*((2*U*(NN2-N0))-Uold1)); U2 = Uold2+(.2*((2*U*(NN1-N0))-Uold2));

dU1 = abs (U1-2*U* (NN2-N0) ) ; dU2 = abs (U2-2*U* (NN1-N0) ) ;

end curr = IE*gam1*gam2 *sum((f2-f1) .*(g1.*conj(g1) + .. .

G = diff(II)/dV;GG = [G(1) G] ; % Conductance h = plot(VV,II,' - x);% Plot I-V

References

1. P. Avouris, P.G. Collins, and M.S. Arnold. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 2001.

2. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker. Logic circuits with carbon nanotube transistors. Science, 294:1317, 2001.

3. H. Schon, H. Meng, and Z. Bao. Self-assembled monolayer organic field-effect transistors. Nature, 413:713, 2001.

4. R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, and R. Reifenberger. "Coulomb staircase" at room temperature in a self-assembled molecular nanostructure. Science, 272:1323, 1996.

5. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour. Conductance of a molecular junction. Science, 278:252, 1997.

6. C. Kergueris, J.-P. Bourgoin, D. Esteve, C. Urbina, M. Magoga, and C. Joachim. Electron transport through a metal-molecule-metal junction. Phys. Rev. B, 59(19):12505, 1999.

7. C. Kergueris, J.P. Bourgoin, and S. Palacin. Experimental investigations of the electrical transport properties of dodecanethiol and a, ff> bisthiolterthiophene molecules embedded in metal-molecule-metal junctions. Nanotechnology, 10:8, 1999.

8. J. Reichert, R. Ochs, H.B. Weber, M. Mayor, and H.V. Lohneysen. Driving current through single organic molecules. cond-mat/0106219, June 2001.

9. S. Hong, R. Reifenberger, W. Tian, S. Datta, J. Henderson, and C.P. Kubiak. Molecular conductance spectroscopy of conjugated, phenyl-based molecules on au(111): the effect of end groups on molecular conduction. Superlattices Microstruct., 28:289, 2000.

10. J.J.W.M. Rosink, M.A. Blauw, L.J. Geerligs, E. van der Drift, and S. Radelaar. Tunneling spectroscopy study and modeling of electron transport in small conjugated azomethine molecules. Phys. Rev. B, 62(15):10459, 2000.

11. C. Joachim and J.K. Gimzewski. An electromechanical amplifier using a single molecule. Chem. Phys. Lett., 265:353, 1997.

12. W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and P. Kubiak. Conductance spectra of molecular wires. J. Chem. Phys., 109(7):2874, 1998.

13. J. Chen, W. Wang, M.A. Reed, A.M. Rawlett, D.W. Price, and J.M. Tour. Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett., 77(8):1224, 2000.

14. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker. Direct measurement of electrical transport through DNA molecules. Nature, 403:635, 2000.

15. M. Magoga and C. Joachim. Conductance of molecular wires connected or bonded in parallel. Phys. Rev. B, 59(24):16011, 1999.

16. L.E. Hall, J.R. Reimers, N.S. Hush, and K. Silverbrook. Formalism, analytical model, and a priori Green's function-based calculations of the current-voltage characteristics of molecular wires. J. Chem. Phys, 112:1510, 2000.

17. M. Paulsson and S. Stafstrom. Self-consistent field study of conduction through conjugated molecules. Phys. Rev. B, 64:035416, 2001.

18. E.G. Emberly and G. Kirczenow. Multiterminal molecular wire systems: a self-consistent theory and computer simulations of charging and transport. Phys. Rev. B, 62(15):10451, 2000.

19. P.S. Damle, A.W. Ghosh, and S. Datta. Unified description of molecular conduction: from molecules to metallic wires. Phys. Rev. B, 64:201403(r), 2001.

20. J. Taylor, H. Gou, and J. Wang. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B, 63:245407, 2001.

21. M. Di Ventra, S.T. Pantelides, and N.D. Lang. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett, 84:979, 2000.

22. P. Damle, A.W. Ghosh, and S. Datta. First-principles analysis of molecular conduction using quantum chemistry software. Chem. Phys., 281, 171, 2001.

23. Y.Q. Xue, S. Datta, and M.A. Ratner. Charge transfer and "band lineup" in molecular electronic devices: a chemical and numerical interpretation. J. Chem. Phys., 115:4292, 2001.

24. J.J. Palacios, A.J. Pérez-Jiménez, E. Louis, and J.A. Vergés. Fullerene-based molecular nanobridges: a first-principles study. Phys. Rev. B, 64(11):115411, 2001.

25. J.M. Seminario, A.G. Zacarias, and J.M. Tour. Molecular current-voltage characteristics. J. Phys. Chem. A, 1999.

26. S. Datta. Nanoscale device modeling: the Green's function method. Superlattices Microstruct., 28:253, 2000.

27. P.S. Damle, A.W. Ghosh, and S. Datta. Molecular nanoelectronics, in M. Reed (Ed.), Theory of Nanoscale Device Modeling. (To be published in 2002; for a preprint, e-mail: [email protected].)

28. F. Zahid, M. Paulsson, and S. Datta. Advanced semiconductors and organic nano-techniques, in H. Markoc (Ed.), Electrical Conduction through Molecules. Academic Press. (To be published in 2002; for a preprint, e-mail: [email protected].)

29. S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge, UK, 1997.

30. S.G. Lias et al. Gas-phase ion and neutral thermochemistry, J. Phys. Chem. Reference Data. American Chemical Society and Americal Institute of Physics, 1988.

31. C. Desjoqueres and D. Spanjaard. Concepts in Surface Physics. 2nd ed. Springer-Verlag, Berlin, 1996.

32. R.G. Parr and W. Yang. Density Functional Theory of Atoms and Molecules, Oxford University Press, 1989, p.99

33. de Picciotto, H.L. Stormer, L.N. Pfeiffer, K.W. Baldwin, and K.W. West. Four-terminal resistance of a ballistic quantum wire. Nature, 411:51, 2001.

34. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak. Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett., 79:2530, 1997.

35. A.W. Ghosh, F. Zahid, P.S. Damle, and S. Datta, Insights from I-V asymmetry in molecular conductors. Preprint. cond-mat/0202519.

36. Special issue on single-charge tunneling, Z. Phys. B, 85, 1991.

37. P.F. Bagwell and T.P. Orlando. Landauer's conductance formula and its generalization to finite voltages. Phys. Rev. B, 40(3):1456, 1989.

38. M. Brandbyge, J. Taylor, K. Stokbro, J.-L. Mozos, and P. Ordejon. Density functional method for nonequilibrium electron transport. Phys. Rev. B, 65(16):165401, 2002.

39. R. Zeller, J. Deutz, and P. Dederichs. Solid State Commun.., 44:993, 1982.

40. Y. Imry. Introduction to Mesoscopic Physics. Oxford University Press, Oxford, UK, 1997.

41. D.K. Ferry and S.M. Goodnick. Transport in Nanostructures. Cambridge University Press, London, 1997.

42. K. Hansen, E. Laegsgaard, I. Stensgaard, and F. Besenbacher. Quantized conductance in relays. Phys. Rev. B, 56:1022, 1997.

43. J.N. Murrell and A.J. Harget. Semi-Empirical SCF MO Theory of Molecules. John Wiley & Sons, London, 1972.

+1 0

Post a comment