1. Kopecek, J. et al., HPMA copolymer-anticancer drug conjugates: design, activity and mechanism of action, Eur. J. Pharm. Biopharm., 50, 61, 2000.

2. Kopecek, J. et al., Water soluble polymers in tumor targeted delivery, J. Control. Rel., 74, 147, 2001.

3. Hobbs, S. K. et al., Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment, Proc. Natl Acad. Sci. USA, 95, 4607, 1998.

4. Maeda, H., Sawa, T., and Konno, T., Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, J. Control. Rel., 74, 47, 2001.

5. Minko, T., Kopeckova, P., and Kopecek, J., Chronic exposure to HPMA copolymer-bound adria-mycin does not induce multidrug resistance in a human ovarian carcinoma cell line, J. Controlled Rel., 59, 133, 1999.

6. Minko, T. et al., HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line, J. Control. Rel., 54, 223, 1998.

7. Abe, S. and Otsuki, M., Styrene maleic acid neocarzinostatin treatment for hepatocellular carcinoma, Curr. Med. Chem. Anti-Cancer Agents, 2, 715, 2002.

8. Brewerton, L. J., Fung, E., and Snyder, F. F., Polyethylene glycol-conjugated adenosine phosphoryl-ase: development of alternative enzyme therapy for adenosine deaminase deficiency, Biochim. Biophys. Acta, 1637, 171, 2003.

9. Pinheiro, J. P. et al., Drug monitoring of PEG-asparaginase treatment in childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma, Leuk. Lymphoma, 43, 1911, 2002.

10. Ettinger, L. J. et al., An open-label, multicenter study of polyethylene glycol-L-asparaginase for the treatment of acute lymphoblastic leukemia, Cancer, 75, 1176, 1995.

11. Motzer, R. J. et al., Phase II trial of branched peginterferon-alpha 2a (40kDa) for patients with advanced renal cell carcinoma, Ann. Oncol., 13, 1799, 2002.

12. Rowinsky, E. K. et al., A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies, J. Clin. Oncol., 21, 148, 2003.

13. Auzenne, E. et al., Superior therapeutic profile of poly-L-glutamic acid-paclitaxel copolymer compared with Taxol in xenogeneic compartmental models of human ovarian carcinoma, Clin. Cancer Res., 8, 573, 2002.

14. Gianasi, E. et al., HPMA copolymer platinates as novel antitumor agents: in vitro properties, pharmacokinetics and antitumor activity in vivo, Eur. J. Cancer, 35, 994, 1999.

15. Thomson, A. H. et al., Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumors, Br. J. Cancer, 81, 99, 1999.

16. Seymour, L. W. et al., Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin, J. Clin. Oncol., 20, 1668, 2002.

17. Liang, Z. P. and Lauterbur, P. C., Principles of Magnetic Resonance Imaging, IEEE Press, New York, 1999.

18. Vlaardingerbroek, M. T. and den Boer, J. A., Magnetic Resonance Imaging, 3rd ed., Springer, New York, 2003.

19. Lauffer, R. B., Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design, Chem. Rev., 87, 901, 1987.

20. Merbach, A. E. and Toth, E., The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Inc., England, 2001 chap. 1-2

21. Weinmann, H. J. et al., Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent, Am. J. Roentgenol., 142, 619, 1984.

22. Kaplan, G. D., Aisen, A. M., Aravapalli, S. R. et al., Preliminary clinical trial of gadodiamide injection: a new nonionic gadolinium contrast agent for MR imaging, J. Magn. Reson. Imaging, 1, 57, 1991.

23. Magerstadt, M. et al., Gd(DOTA): An alternative to Gd(DTPA) as a T1j2 relaxation agent for NMR imaging or spectroscopy, Magn. Reson. Med., 3, 808, 1986.

24. Tweedle, M. F., The proHance story: the making of a novel MRI contrast agent, Eur. Radiol., 7(Suppl 5), 225, 1997.

25. Youk, J. H., Lee, J. M., and Kim, C. S., MRI for detection of hepatocellular carcinoma: comparison of mangafodipir trisodium and gadopentetate dimeglumine contrast agents, Am. J. Roentgenol., 183, 1049, 2004.

26. Weissleder, R. et al., Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging, Radiology, 175, 494, 1990.

27. Wang, S. C. et al., Evaluation of Gd-DTPA-labeled Dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues, Radiology, 175, 483, 1990.

28. Bryant, L. H. et al., Synthesis and relaxometry of high-generation (G = 5, 7, 9 and 10) PAMAM dendrimer-DOTA-gadolinium chelates, J. Magn. Reson. Imaging, 9, 348, 1999.

29. Lu, Z. R. et al., Design of novel bioconjugates for targeted drug delivery, J. Control. Rel., 78, 165, 2002.

30. Duncan, R., The dawning era of polymer therapeutics, Nat. Rev. Drug Discov., 2, 347, 2003.

31. Pimm, M. V. et al., Gamma scintigraphy of the biodistribution of I labeled N-(2-hydroxypropyl)-methacrylamide copolymer-doxorubicin conjugates in mice with transplanted melanoma and mammary carcinoma, J. Drug Target, 3, 375, 1996.

32. Kissel, M. et al., Synthetic macromolecular drug carriers: biodistribution of poly [(N-2-hydroxypro-pyl)methacrylamide] copolymers and their accumulation in solid rat tumors, J. Pharm. Sci. Tech., 55, 191, 2001.

33. Mitra, A. et al., Technetium-99m-Labeled N-(2-hydroxypropyl) methacrylamide copolymers: synthesis, characterization, and in vivo biodistribution, Pharm. Res., 21, 1153, 2004.

34. Wang, Y.L., and Lu, Z.R. Unpublished data 2005.

35. Wang, D. et al., The arhrotropism of macromolecules in adjuvant-induced arthritis rat model: a preliminary study, Pharm. Res., 21, 1741, 2004.

36. Li, C., Poly (L-glutamic acid)-anticancer drug conjugates, Adv. Drug Deliv. Rev., 54, 695, 2002.

37. Hurwitz, E., Wilchek, M., and Pitha, J., Soluble macromolecules as carriers for daunorubicin, J. Appl. Biochem., 2, 25, 1980.

38. Li, C. et al., Complete regression of well-established tumors using novel water-soluble poly (L-glutamic acid)-paclitaxel conjugates, Cancer Res., 58, 2404, 1998.

39. Zou, Y. et al., Effectiveness of water soluble poly(L-glutamic acid)-camptothecin conjugate against resistant human lung cancer xenografted in nude mice, Int. J. Oncol., 18, 331, 2001.

40. Lu, Z. R. et al., Poly(L-glutamic acid) Gd(III)-DOTA conjugate with a degradable spacer for magnetic resonance imaging, Bioconjugate Chem., 14, 715, 2003.

41. Lu, Z. R., Kopeckova, P., and Kopecek, J., Polymerizable Fab' fragment for targeting of anticancer drugs, Nature Biotechnol., 17, 1101, 1999.

42. Lu, Z. R. et al., Polymerizable Fab' antibody fragments targeted photodynamic cancer therapy in nude mice, STP Pharm. Sci., 13, 69, 2003.

43. Vaidya, A. et al. Non-invasive in vivo imaging of a polymeric drug conjugate using contrast enhanced MRI. In Transactions of 32nd Annual Meeting of the Controlled Release Society, 2005.

Relaxation Audio Sounds Lazy Summer Day

Relaxation Audio Sounds Lazy Summer Day

This is an audio all about guiding you to relaxation. This is a Relaxation Audio Sounds with sounds from Lazy Summer Day.

Get My Free MP3 Audio

Post a comment