1. Berger, M. S., Malignant astrocytomas: Surgical aspects, Semin. Oncol., 21, 172, 1994.

2. Gutin, P. H. and Posner, J. B., Neuro-oncology: Diagnosis and management of cerebral gliomas— past, present, and future, Neurosurgery, 47, 1, 2000.

3. Parney, I. F. and Chang, S. M., Current chemotherapy for glioblastoma, Cancer J., 9, 149, 2003.

4. Paul, D. B. and Kruse, C. A., Immunologic approaches to therapy for brain tumors, Curr. Neurol. Neurosci. Rep., 1, 238, 2001.

5. Rainov, N. G. and Ren, H., Gene therapy for human malignant brain tumors, Cancer J., 9, 180, 2003.

6. Curran, W.J., Jr., et al., Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials, J. Natl Cancer Inst., 85, 704, 1993.

7. Lacroix, M. et al., A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival, J. Neurosurg., 95, 190, 2001.

8. Hentschel, S. J. and Lang, F. F., Current surgical management of glioblastoma, Cancer J., 9, 113, 2003.

9. Laws, E.R., Jr. and Shaffrey, M. E., The inherent invasiveness of cerebral gliomas: Implications for clinical management, Int. J. Dev. NeuroSci., 17, 413, 1999.

10. Ware, M. L., Berger, M. S., and Binder, D. K., Molecular biology of glioma tumorigenesis, Histol. Histopathol., 18, 207, 2003.

Parney, I. F., Hao, C., and Petruk, K. C., Glioma immunology and immunotherapy, Neurosurgery, 46, 778, 2000.

Kaczarek, E. et al., Dissecting glioma invasion: Interrelation of adhesion, migration and intercellular contacts determine the invasive phenotype, Int. J. Dev. NeuroSci., 17, 625, 1999. Nutt, C. L., Matthews, R. T., and Hockfield, S., Glial tumor invasion: A role for the upregulation and cleavage of BEHAB/brevican, Neuroscientist, 7, 113, 2001.

Halperin, E. C., Burger, P. C., and Bullard, D. E., The fallacy of the localized supratentorial malignant glioma, Int. J. Radiat. Oncol. Biol. Phys., 15, 505, 1988.

Barth, R. F., A critical assessment of boron neutron capture therapy: An overview, J. Neurooncol., 62, 1, 2003.

Nakagawa, Y. et al., Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams, J. Neurooncol., 62, 87, 2003. Wadabayashi, N. et al., Selective boron accumulation in human ocular melanoma vs. surrounding eye components after 10B1-p-boronophenylalanine administration. Prerequisite for clinical trial of neutron-capture therapy, Melanoma Res., 4, 185, 1994.

Busse, P. M. et al., A critical examination of the results from the Harvard-MIT NCT program phase I clinical trial of neutron capture therapy for intracranial disease, J. Neurooncol., 62, 111, 2003. Kato, I. et al., Effectiveness of BNCT for recurrent head and neck malignancies, Appl. Radiat. Isot., 61, 1069, 2004.

Rao, M. et al., BNCT of 3 cases of spontaneous head and neck cancer in feline patients, Appl. Radiat. Isot., 61, 947, 2004.

Koivunoro, H. et al., BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams, Appl. Radiat. Isot., 61, 853, 2004.

Pinelli, T. et al., TAOrMINA: from the first idea to the application to the human liver, In Research and Development in Neutron Capture Therapy, Sauerwein, M. W., Moss, R., Wittig, A. et al., Eds., Modduzzi Editore, International Proceedings Division, Bologna, pp. 1065-1072, 2002. Coderre, J. A. et al., Boron neutron capture therapy: Cellular targeting of high linear energy transfer radiation, Technol. Cancer Res. Treat., 2, 355, 2003.

Barth, R. F. et al., Boron neutron capture therapy of cancer: Current status and future prospects, Clin. Cancer Res., 11, 3987, 2005.

Zamenhof, R. G. et al., Eleventh World Congress on Neutron Capture Therapy, Appl. Radiat. Isot., 61, 731, 2004.

Farr, L. E. et al., Neutron capture therapy with boron in the treatment of glioblastoma multiforme, Am. J. Roentgenol. Radium Ther. Nucl. Med., 71, 279, 1954.

Goodwin, J. T. et al., Pathological study of eight patients with glioblastoma multiforme treated by neutron-capture therapy using boron 10, Cancer, 8, 601, 1955.

Snyder, H. R., Reedy, A. J., and Lennarz, W. J., Synthesis of aromatic boronic acids. Aldehydo boronic acids and a boronic acid analog of tyrosine, J. Am. Chem. Soc., 80, 835, 1958. Soloway, A. H., Hatanaka, H., and Davis, M. A., Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds, J. Med. Chem., 10, 714, 1967.

Hatanaka, H. and Nakagawa, Y., Clinical results of long-surviving brain tumor patients who underwent boron neutron capture therapy, Int. J. Radiat. Oncol. Biol. Phys., 28, 1061, 1994. Mishima, Y., Selective thermal neutron capture therapy of cancer cells using their specific metabolic activities—melanoma as prototype, In Cancer Neutron Capture Therapy, Mishima, Y., Ed., Plenum Press, New York, pp. 1-26, 1996.

Ang, K. K. et al., Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma, Cancer Res., 62, 7350, 2002. Hawthorne, M. F. and Lee, M. W., A critical assessment of boron target compounds for boron neutron capture therapy, J. Neurooncol., 62, 33, 2003.

Soloway, A. H. et al., The chemistry of neutron capture therapy, Chem. Rev., 98, 1515, 1998. Gillies, E. R. and Frechet, J. M. J., Dendrimers and dendritic polymers in drug delivery, Drug Discov. Today, 10, 35, 2005.

Esfand, R. and Tomalia, D. A., Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications, Drug Discov. Today, 6, 427, 2001.

Tomalia, D.A., Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic organic chemistry, Aldrichimica ACTA, 37, 39, 2004 Verheyde, B., Maes, W., and Dehaen, W., The use of 1,3,5-triazines in dendrimer synthesis, Mater. Sci. Eng., C, 18, 243, 2001.

McCarthy, T. D. et al., Dendrimers as drugs: Discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention, Mol. Pharmacol., 2, 312, 2005. Venditto, V. J., Regino, C. A., and Brechbiel, M. W., PAMAM dendrimer based macromolecules as improved contrast agents, Mol. Pharmacol., 2, 302, 2005.

Ambade, A. V., Savariar, E. N., and Thayumanavan, S., Dendrimeric micelles for controlled drug release and targeted delivery, Mol. Pharmacol., 2, 264, 2005.

Majoros, I. J. et al., Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy, J. Med. Chem., 48, 5892, 2005.

Boas, U. and Heegaard, P. M., Dendrimers in drug research, Chem. Soc. Rev., 33, 43, 2004. Klajnert, B. and Bryszewska, M., Dendrimers: Properties and applications, Acta Biochim. Pol., 48, 199, 2001.

Sharkey, R. M. and Goldenberg, D. M., Perspectives on cancer therapy with radiolabeled monoclonal antibodies, J. Nucl. Med., 46(Suppl 1), 115S, 2005.

Jaracz, S. et al., Recent advances in tumor-targeting anticancer drug conjugates, Bioorg. Med. Chem., 13, 5043, 2005.

Garnett, M. C., Targeted drug conjugates: Principles and progress, Adv. Drug Deliv. Rev., 53, 171, 2001.

Chari, R. V., Targeted delivery of chemotherapeutics: Tumor-activated prodrug therapy, Adv. Drug Deliv. Rev., 31, 89, 1998.

Hamblett, K. J. et al., Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate, Clin. Cancer Res., 10, 7063, 2004.

Trail, P. A., King, H. D., and Dubowchik, G. M., Monoclonal antibody drug immunoconjugates for targeted treatment of cancer, Cancer Immunol. Immunother., 52, 328, 2003.

Fracasso, G. et al., Immunotoxins and other conjugates: Preparation and general characteristics, Mini-Rev. Med. Chem., 4, 545, 2004.

Liu, L. et al., Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors, J. Hematother., 4, 477, 1995.

Alam, F. et al., Boron neutron capture therapy: Linkage of a boronated macromolecule to monoclonal antibodies directed against tumor-associated antigens, J. Med. Chem., 32, 2326, 1989. Barth, R. F. et al., Neutron capture using boronated monoclonal antibody directed against tumor-associated antigens, Cancer Detect. Prev., 5, 315, 1982.

Alam, F., Barth, R. F., and Soloway, A. H., Boron containing immunoconjugates for neutron capture therapy of cancer and for immunocyto chemistry, Antibody Immunoconjugates Radiopharm., 2, 145, 1989.

Tolpin, E. I. et al., Boron neutron capture therapy of cerebral gliomas. II. Utilization of the blood-brain barrier and tumor-specific antigens for the selective concentration of boron in gliomas, Oncology, 32, 223, 1975.

Sneath, R. L. et al., Protein-binding polyhedral boranes, J. Med. Chem., 19, 1290, 1976. Varadarajan, A. et al., Conjugation of phenyl isothiocyanate derivatives of carborane to antitumor antibody and in vivo localization of conjugates in nude mice, Bioconjug. Chem., 2, 102, 1991. Takahashi, T. et al., Preliminary study for application of anti-alpha-fetoprotein monoclonal antibody to boron-neutron capture therapy, Jpn. J. Exp. Med., 57, 83, 1987.

Compostella, F. et al., Synthesis of glycosyl carboranes with different linkers between the sugar and the boron cage moieties, In Research and Development in Neutron Capture Therapy. Proceedings of the 10th International Congress on Neutron Capture Therapy, Saverwein, W., Moss, R., and Wittig, A., Eds., Monduzzi Editore, Bologna, p.8, 2002.

Giovenzana, G. B. et al., Synthesis of carboranyl derivatives of alkynyl glycosides as potential BNCT agents, Tetrahedron, 55, 14123, 1999.

Alam, F. et al., Dicesium N-succinimidyl 3-(undecahydro-closo-dodecaboranyldithio)propionate, a novel heterobifunctional boronating agent, J. Med. Chem., 28, 522, 1985.

Barth, R. F. et al., Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy, Bioconjug. Chem., 5, 58, 1994. Liu, L. et al., Critical evaluation of bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors, Anticancer Res., 16, 2581, 1996.

Barth, R. F. et al., In vivo distribution of boronated monoclonal antibodies and starburst dendrimers, In Adv Neutron Capture Ther, Soloway, A. H., Barth, R. F., and Carpenter, D.E., Eds., Plenum Press, New York, p. 35, 1993.

Wu, G. et al., Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy, Bioconjug. Chem., 15, 185, 2004.

Barth, R. F. et al., Neutron capture therapy of epidermal growth factor ( + ) gliomas using boronated cetuximab (IMC-C225) as a delivery agent, Appl. Radiat. Isot., 61, 899, 2004. Arteaga, C. L., Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia, Semin. Oncol., 29, 3, 2002.

Mendelson, J. and Beselga, J., Epidermal growth factor receptor targeting in cancer, Seminars Oncol., 33, 369, 2006.

Pal, S. K. and Pegram, M., Epidermal growth factor receptor and signal transduction: potential targets for anti-cancer therapy, Anticancer Drugs, 16, 483, 2005.

Normanno, N. et al., The ErbB receptors and their ligands in cancer: an overview, Curr. Drug Targets, 6, 243, 2005.

Jorissen, R. N. et al., Epidermal growth factor receptor: mechanisms of activation and signaling, Exp. Cell Res., 284, 31, 2003.

Yang, W. et al., Boronated epidermal growth factor as a delivery agent for neutron capture therapy of EGF receptor positive gliomas, Appl. Radiat. Isot., 61, 981, 2004.

Capala, J. et al., Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors, Bioconjug. Chem., 7, 7, 1996.

Yang, W. et al., Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors, Cancer Res., 57, 4333, 1997.

Yang, W. et al., Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas, Cancer Res., 62, 6552, 2002.

Barth, R. F. et al., Molecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas, Cancer Res., 62, 3159, 2002.

Reddy, J. A., Allagadda, V. M., and Leamon, C. P., Targeting therapeutic and imaging agents to folate receptor positive tumors, Curr. Pharm. Biotechnol., 6, 131, 2005.

Leamon, C. P. and Reddy, J. A., Folate-targeted chemotherapy, Adv. Drug Deliv. Rev., 56, 1127, 2004.

Sudimack, J. and Lee, R. J., Targeted drug delivery via the folate receptor, Adv. Drug Deliv. Rev., 41, 147, 2000.

Paulos, C. M. et al., Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery, Mol. Pharmacol., 66, 1406, 2004.

Reddy, J. A. and Low, P. S., Folate-mediated targeting of therapeutic and imaging agents to cancers, Crit. Rev. Ther. Drug Carrier Syst., 15, 587, 1998.

Stephenson Stacy, M. et al., Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy, Anticancer Res., 23, 3341, 2003.

Ward, C. M., Folate-targeted non-viral DNA vectors for cancer gene therapy, Curr. Opin. Mol. Ther., 2, 182, 2000.

Gottschalk, S. et al., Folate receptor mediated DNA delivery into tumor cells: Protosomal disruption results in enhanced gene expression, Gene Ther., 1, 185, 1994.

Hilgenbrink, A. R. and Low, P. S., Folate receptor-mediated drug targeting: from therapeutics to diagnostics, J. Pharm. Sci., 94, 2135, 2005.

Shukla, S. et al., Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy, Bioconjug. Chem., 14, 158, 2003. Benouchan, M. and Colombo, B. M., Anti-angiogenic strategies for cancer therapy (Review), Int. J. Oncol., 27, 563, 2005.

89. Tortora, G., Melisi, D., and Ciardiello, F., Angiogenesis: a target for cancer therapy, Curr. Pharm. Des., 10, 11, 2004.

90. Brekken, R. A., Li, C., and Kumar, S., Strategies for vascular targeting in tumors, Int. J. Cancer, 100, 123, 2002.

91. Gaya, A. M. and Rustin, G. J., Vascular disrupting agents: a new class of drug in cancer therapy, Clin. Oncol. (R. Coll. Radiol.), 17, 277, 2005.

92. Bergsland, E. K., Vascular endothelial growth factor as a therapeutic target in cancer, Am. J. Health Syst. Pharm., 61, S4, 2004.

93. Hicklin, D. J. and Ellis, L. M., Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis, J. Clin. Oncol., 23, 1011, 2005.

94. Backer, M. V. et al., Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature, Mol. Cancer Ther., 4, 1423, 2005.

95. Barth, R. F., Yang, W., and Coderre, J. A., Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation, J. Neurooncol., 62, 61, 2003.

96. Parrott, M. C. et al., Synthesis and properties of carborane-functionalized aliphatic polyester dendrimers, J. Am. Chem. Soc., 127, 12081, 2005.

97. Park, J. W., Benz, C. C., and Martin, F. J., Future directions of liposome- and immunoliposome-based cancer therapeutics, Semin. Oncol., 31, 196, 2004.

98. Sapra, P. and Allen, T. M., Ligand-targeted liposomal anticancer drugs, Prog. Lipid Res., 42, 439, 2003.

99. Carlsson, J. et al., Ligand liposomes and boron neutron capture therapy, J. Neurooncol., 62,47, 2003.

100. Hawthorne, M. F. and Shelly, K., Liposomes as drug delivery vehicles for boron agents, J. Neurooncol., 33, 53, 1997.

101. Mishima, Y. et al., Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound, Lancet, 2, 388, 1989.

102. Coderre, J. A. et al., Selective delivery of boron by the melanin precursor analogue p-boronophe-nylalanine to tumors other than melanoma, Cancer Res., 50, 138, 1990.

103. Ono, K. et al., The combined effect of boronophenylalanine and borocaptate in boron neutron capture therapy for SCCVII tumors in mice, Int. J. Radiat. Oncol. Biol. Phys., 43, 431, 1999.

104. Obayashi, S. et al., Delivery of (10)boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy, Oral Oncol., 40, 474, 2004.

105. Yoshino, K. et al., Improvement of solubility of p-boronophenylalanine by complex formation with monosaccharides, Strahlenther. Onkol., 165, 127, 1989.

106. Ryynanen, P. M. et al., Models for estimation of the 10B concentration after BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT, Int. J. Radiat. Oncol. Biol. Phys., 48, 1145, 2000.

107. Pavanetto, F. et al., Boron-loaded liposomes in the treatment of hepatic metastases: preliminary investigation by autoradiography analysis, Drug Deliv., 7, 97, 2000.

108. Martini, S. et al., Boronphenylalanine insertion in cationic liposomes for boron neutron capture therapy, Biophys. Chem., 111, 27, 2004.

109. Smyth Templeton, N. et al., Cationic liposomes as in vivo delivery vehicles, Curr. Med. Chem., 10, 1279, 2003.

110. Mehta, S. C., Lai, J. C., and Lu, D. R., Liposomal formulations containing sodium mercaptounde-cahydrododecaborate (BSH) for boron neutron capture therapy, J. Microencapsul., 13, 269, 1996.

111. Ji, B. et al., Cell culture and animal studies for intracerebral delivery of borocaptate in liposomal formulation, Drug Deliv., 8, 13, 2001.

112. Maruyama, K. et al., Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT), J. Control. Release, 98, 195, 2004.

113. Valliant, J. F. et al., The medicinal chemistry of carboranes, Coord. Chem. Rev., 232, 173, 2002.

114. Hawthorne, M. F., The role of chemistry in the development of cancer therapy by the boron-neutron capture reaction, Angew. Chem. Int. Ed. Engl., 105, 997, 1993.

115. Moraes, A. M., Santanaand, M. H. A., and Carbonell, R. G., Preparation and characterization of liposomal systems entrapping the boronated compound o-carboranylpropylamine, J. Microencapsul., 16, 647, 1999.

Moraes, A. M., Santana, M. H. A., and Carbonell, R. G., Characterization of liposomal systems entrapping boron-containing compounds in response to pH gradients, In Biofunctional Membranes, Proceedings of the International Conference on Biofunctional Membranes, Butterfield, A., Ed., Plenum Press, New York, p.259, 1996.

Shelly, K. et al., Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes, Proc. Natl. Acad. Sci. USA, 89, 9039, 1992. Feakes, D. A. et al., [Na3B20H17NH3]: Synthesis and liposomal delivery to murine tumors, Proc. Natl. Acad. Sci. USA, 91, 3029, 1994.

Hawthorne, M. F., Shelly, K., and Li, F., The versatile chemistry of the B20H18]2k ions: novel reactions and structural motifs, Chem. Commun. (Camb.), 547, 2002.

Feakes, D. A. et al., Synthesis and in vivo murine evaluation of [Na41-(1'-B10H9)-6-SHB10H8] as a potential agent for boron neutron capture therapy, Proc. Natl Acad. Sci. USA, 96, 6406, 1999. Watson-Clark, R. A. et al., Model studies directed toward the application of boron neutron capture therapy to rheumatoid arthritis: boron delivery by liposomes in rat collagen-induced arthritis, Proc. Natl. Acad. Sci. USA, 95, 2531, 1998.

Feakes, D. A., Spinler, J. K., and Harris, F. R., Synthesis of boron-containing cholesterol derivatives for incorporation into unilamellar liposomes and evaluation as potential agents for BNCT, Tetrahedron, 55, 11177, 1999.

Thirumamagal, B. T. S., Zhao, X. B., Bandyopadhyaya, A. K., Narayanasamy, S., Johnsamuel, J.,

Tiwari, R., Golightly, D. W., Patel, V., Jehning, B. T., Backer, M. V., Barth, R. F., Lee, R. J., Backer,

J. M., and Tjarks, W., Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy (BNCT), Bioconjug. Chem., 2006, in press.

Pan, G., Oie, S., and Lu, D. R., Uptake of the carborane derivative of cholesteryl ester by glioma cancer cells is mediated through LDL receptors, Pharm. Res., 21, 1257, 2004.

Maletinska, L. et al., Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein, Cancer Res., 60, 2300, 2000.

Nygren, C. et al., Increased levels of cholesterol esters in glioma tissue and surrounding areas of human brain, Br. J. Neurosurg., 11, 216, 1997.

Leppala, J. et al., Accumulation of 99mTc-low-density lipoprotein in human malignant glioma, Br. J. Cancer, 71, 383, 1995.

Peacock, G. et al., In vitro uptake of a new cholesteryl carborane ester compound by human glioma cell lines, J. Pharm. Sci., 93, 13, 2004.

Wei, Q., Kullberg, E. B., and Gedda, L., Trastuzumab-conjugated boron-containing liposomes for tumor-cell targeting; development and cellular studies, Int. J. Oncol., 23, 1159, 2003. Bohl Kullberg, E. et al., Development of EGF-conjugated liposomes for targeted delivery of boro-nated DNA-binding agents, Bioconjug. Chem., 13, 737, 2002.

Stephenson, S. M. et al., Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy, Anticancer Res., 23, 3341, 2003.

Yanagie, H. et al., Boron neutron capture therapy using 10B entrapped anti-CEA immunoliposome, Hum. Cell, 2, 290, 1989.

Yanagie, H. et al., Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model, Br. J. Cancer, 63, 522, 1991. Yanagie, H. et al., Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B, Biomed. Pharmacother., 56, 93, 2002.

Xu, L., Boron neutron capture therapy of human gastric cancer by boron-containing immunolipo-somes under thermal neutron irradiation (in Chinese), Zhonghua Yi Xue Za Zhi., 71, 568, 1991. Xu, L., Zhang, X. Y., and Zhang, S. Y., In vitro and in vivo targeting therapy of immunoliposomes against human gastric cancer (in Chinese), Zhonghua Yi Xue Za Zhi., 74, 83, 1994. Pan, X. Q., Wang, H., and Lee, R. J., Boron delivery to a murine lung carcinoma using folate receptor-targeted liposomes, Anticancer Res., 22, 1629, 2002.

Pan, X. Q. et al., Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy, Bioconjug. Chem., 13, 435, 2002.

Sudimack, J. J. et al., Folate receptor-mediated liposomal delivery of a lipophilic boron agent to tumor cells in vitro for neutron capture therapy, Pharm. Res., 19, 1502, 2002.

Bohl Kullberg, E. et al., Introductory experiments on ligand liposomes as delivery agents for boron neutron capture therapy, Int. J. Oncol., 23, 461, 2003.

Kullberg, E. B., Nestor, M., and Gedda, L., Tumor-cell targeted epiderimal growth factor liposomes loaded with boronated acridine: uptake and processing, Pharm. Res., 20, 229, 2003. Mehvar, R., Dextrans for targeted and sustained delivery of therapeutic and imaging agents, J. Control. Release, 69, 1, 2000.

Mehvar, R., Recent trends in the use of polysaccharides for improved delivery of therapeutic agents: pharmacokinetic and pharmacodynamic perspectives, Curr. Pharm. Biotechnol., 4, 283, 2003. Chau, Y., Tan, F. E., and Langer, R., Synthesis and characterization of dextran-peptide-methotrexate conjugates for tumor targeting via mediation by matrix metalloproteinase II and matrix metallopro-teinase IX, Bioconjug. Chem., 15, 931, 2004.

Zhang, X. and Mehvar, R., Dextran-methylprednisolone succinate as a prodrug of methylpredniso-lone: Plasma and tissue disposition, J. Pharm. Sci., 90, 2078, 2001.

Larsson, B., Gabel, D., and Borner, H. G., Boron-loaded macromolecules in experimental physiology: tracing by neutron capture radiography, Phys. Med. Biol., 29, 361, 1984. Gabel, D. and Walczyna, R., B-Decachloro-o-carborane derivatives suitable for the preparation of boron-labeled biological macromolecules, Z. Naturforsch., C, 37, 1038, 1982. Pettersson, M. L. et al., In vitro immunological activity of a dextran-boronated monoclonal antibody, Strahlenther. Onkol., 165, 151, 1989.

Ujeno, Y. et al., The enhancement of thermal-neutron induced cell death by 10-boron dextran, Strahlenther. Onkol., 165, 201, 1989.

Pettersson, M. L. et al., Immunoreactivity of boronated antibodies, J. Immunol. Methods, 126, 95, 1990.

Holmberg, A. and Meurling, L., Preparation of sulfhydrylborane-dextran conjugates for boron neutron capture therapy, Bioconjug. Chem., 4, 570, 1993.

Carlsson, J. et al., Strategy for boron neutron capture therapy against tumor cells with overexpression of the epidermal growth factor-receptor, Int. J. Radiat. Oncol. Biol. Phys., 30, 105, 1994. Gedda, L. et al., Development and in vitro studies of epidermal growth factor-dextran conjugates for boron neutron capture therapy, Bioconjug. Chem., 7, 584, 1996.

Mehta, S. C. and Lu, D. R., Targeted drug delivery for boron neutron capture therapy, Pharm. Res., 13, 344, 1996.

Olsson, P. et al., Uptake of a boronated epidermal growth factor-dextran conjugate in CHO xenografts with and without human EGF-receptor expression, Anti-Cancer Drug Des., 13, 279, 1998. Novick, S. et al., Linkage of boronated polylysine to glycoside moieties of polyclonal antibody; boronated antibodies as potential delivery agents for neutron capture therapy, Nucl. Med. Biol., 29, 159, 2002.

Ferro, V. A., Morris, J. H., and Stimson, W. H., A novel method for boronating antibodies without loss of immunoreactivity, for use in neutron capture therapy, Drug Des. Discov., 13, 13, 1995. Sano, T., Boron-enriched streptavidin potentially useful as a component of boron carriers for neutron capture therapy of cancer, Bioconjug. Chem., 10, 905, 1999.

Thomas, J. and Hawthorne, M. F., Dodeca(carboranyl)-substituted closomers: Toward unimolecular nanoparticles as delivery vehicles for BNCT, Chem. Commun. (Camb.), 1884, 2001. Pardridge, W. M., Vector-mediated drug delivery to the brain, Adv. Drug Deliv. Rev., 36, 299, 1999. Pardridge, W. M., Blood-brain barrier biology and methodology, J. Neurovirol., 5, 556, 1999. Hatakeyama, H. et al., Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo, Int. J. Pharm., 281, 25, 2004.

Yanagie, H. et al., Accumulation of boron compounds to tumor with polyethylene-glycol binding liposome by using neutron capture autoradiography, Appl. Radiat. Isot., 61, 639, 2004. Maruyama, K. et al., Targetability of novel immunoliposomes modified with amphipathic poly (ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies, Biochim. Biophys. Acta, 1234, 74, 1995.

Yang, W. et al., Evaluation of systemically administered radiolabeled epidermal growth factor as a brain tumor targeting agent, J. Neurooncol., 55, 19, 2001.

Bobo, R. H. et al., Convection-enhanced delivery of macromolecules in the brain, Proc. Natl Acad. Sci. USA, 91, 2076, 1994.

167. Groothuis, D. R., The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery, Neurooncology, 2, 45, 2000.

168. Vogelbaum, M. A., Convection enhanced delivery for the treatment of malignant gliomas: symposium review, J. Neurooncol., 73, 57, 2005.

169. Husain, S. R. and Puri, R. K., Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside, J. Neurooncol., 65, 37, 2003.

170. Kunwar, S., Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies, Acta Neurochir. Suppl., 88, 105, 2003.

171. Wikstrand, C. J. et al., Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas, Cancer Res., 55, 3140, 1995.

172. Wikstrand, C. J. et al., Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII, Cancer Res., 57, 4130, 1997.

173. Barth, R. F., Wu, G., Kawabata, S., Sferra, T. J., Bandyopadhyaya, A. K., Tjarks, W., Ferketich, A. K., Binns, P. J., Riley, K. J., Coderre, J. A., Ciesielski, M. J., Fenstermaker, R. A., Wikstrand, C. J. et al., Molecular targeting and treatment of EGFRvIII positive gliomas using boronated monoclonal antibody L8A4, Clin. Cancer Res., 12, 3792, 2006.

174. Cokgor, I. et al., Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas, J. Clin. Oncol., 18, 3862, 2000.

175. Akabani, G. et al., Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a phase II study, J. Nucl. Med., 46, 1042, 2005.

176. Laske, D. W., Youle, R. J., and Oldfield, E. H., Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors, Nat. Med., 3, 1362, 1997.

177. Sampson, J. H. et al., Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors, J. Neurooncol., 65, 27, 2003.

178. Weber, F. et al., Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma, J. Neurooncol., 64, 125, 2003.

179. Weber, F. W. et al., Local convection enhanced delivery of IL4-Pseudomonas exotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma, Acta Neurochir. Suppl., 88, 93, 2003.

180. Ferrari, M., Nanovector therapeutics, Curr. Opin. Chem. Biol., 9, 343, 2005.

181. Ferrari, M., Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer, 5, 161, 2005.

182. Blue, T. E. and Yanch, J. C., Accelerator-based epithermal neutron sources for boron neutrom capture therapy of brain tumors, J. Neurooncol., 62, 19, 2003.

Diabetes Sustenance

Diabetes Sustenance

Get All The Support And Guidance You Need To Be A Success At Dealing With Diabetes The Healthy Way. This Book Is One Of The Most Valuable Resources In The World When It Comes To Learning How Nutritional Supplements Can Control Sugar Levels.

Get My Free Ebook

Post a comment