1. Moghimi, S. M., Hunter, A. C., and Murray, J. C., Long-circulating and target-specific nanoparticles: Theory to practice, Pharmacological Reviews, 53, 283-318, 2001.

2. Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers, Nature Reviews Drug Discovery, 4, 145-160, 2005.

3. Allen, C., Maysinger, D., and Eisenberg, A., Nano-engineering block copolymer aggregates for drug delivery, Colloids and Surfaces B, 16, 3-27, 1999.

4. Kwon, G. S., Diblock copolymer nanoparticles for drug delivery, Critical Reviews in Therapeutic Drug Carrier Systems, 15, 481-512, 1998.

5. Kataoka, K., Kwon, G. S., Yokoyama, M., Okano, T., and Sakurai, Y., Block-copolymer micelles as vehicles for drug delivery, Journal of Controlled Release, 24, 119-132, 1993.

6. Gaucher, G., Dufresne, M. H., Sant, V. P., Kang, N., Maysinger, D., and Leroux, J. C., Block copolymer micelles: Preparation, characterization and application in drug delivery, Journal of Controlled Release, 109, 169-188, 2005.

7. Kabanov, A. V., Batrakova, E. V., and Alakhov, V. Y., Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery, Journal of Controlled Release, 82, 189-212, 2002.

8. Elbert, D. L. and Hubbell, J. A., Surface treatments of polymers for biocompatibility, Annual Review of Material Science, 26, 365-394, 1996.

Harris, J. M., Ed., Polyethylene glycol) chemistry: Biotechnical and biomedical applications, In Topics in Applied Chemistry, Plenum, New York; London, 385, 1992.

Allen, C., Dos Santos, N., Gallagher, R., Chiu, G. N. C., Shu, Y., Li, W. M., Johnstone, S. A., Janoff, A. S., Mayer, L. D., Webb, M. S., and Bally, M. B., Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol), Bioscience Representatives, 22, 225-250, 2002.

Gref, R., Domb, A., Quellec, P., Blunk, T., Muller, R. H., Verbavatz, J. M., and Langer, R., The controlled intravenous delivery of drugs using peg-coated sterically stabilized nanospheres, Advanced Drug Delivery Reviews, 16, 215-233, 1995.

Hunter, R. J. and White, L. R., Foundations of colloid science, Oxford Science Publications, Clarendon Press, Oxford [Oxfordshire]; Oxford University Press, New York, p. 2 v. (1089), 1987. Müller, R. H., Colloidal Carriers for Controlled Drug Delivery and Targeting: Modification, Characterization and In Vivo Distribution, Wissenschaftliche Verlagsgesellschaft, Stuttgart; CRC Press; Sole distributor for North America CRC Press Inc., Boca Raton, FL, p. 379, 1991. Kato, Y., Watanabe, K., Nakakura, M., Hosokawa, T., Hayakawa, E., and Ito, K., Blood clearance and tissue distribution of various formulations of alpha-tocopherol injection after intravenous administration, Chemical and Pharmaceutical Bulletin (Tokyo), 41, 599-604, 1993. Oku, N. and Namba, Y., Long-circulating liposomes, Critical Reviews in Therapeutic Drug Carrier Systems, 11, 231-270, 1994.

Nakanishi, T., Fukushima, S., Okamoto, K., Suzuki, M., Matsumura, Y., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Development of the polymer micelle carrier system for doxorubicin, Journal of Controlled Release, 74, 295-302, 2001.

Seymour, L. W., Duncan, R., Strohalm, J., and Kopecek, J., Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats, Journal of Biomedical Materials Research, 21, 1341-1358, 1987.

Allen, C., Yu, Y., Maysinger, D., and Eisenberg, A., Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818, Bioconjugate Chemistry, 9, 564-572, 1998.

Zhang, L. F. and Eisenberg, A., Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution, Polymers for Advanced Technologies, 9, 677-699, 1998.

Choucair, A. and Eisenberg, A., Control of amphiphilic block copolymer morphologies using solution conditions, European Physical Journal E, 10, 37-44, 2003.

Discher, D. E. and Eisenberg, A., Polymer vesicles, Science, 297, 967-973, 2002.

Lim Soo, P. and Eisenberg, A., Preparation of block copolymer vesicles in solution, Journal of

Polymer Science Part B-Polymer Physics, 42, 923-938, 2004.

Kabanov, A. V., Nazarova, I. R., Astafieva, I. V., Batrakova, E. V., Alakhov, V. Y., Yaroslavov, A. A., and Kabanov, V. A., Micelle formation and solubilization of fluorescent-probes in poly(ox-yethylene-b-oxypropylene-b-oxyethylene) solutions, Macromolecules, 28, 2303-2314, 1995. Wilhelm, M., Zhao, C. L., Wang, Y. C., Xu, R. L., Winnik, M. A., Mura, J. L., Riess, G., and Croucher, M. D., Polymer micelle formation. 3. Poly(styrene-ethylene oxide) block copolymer micelle formation in water—a fluorescence probe study, Macromolecules, 24, 1033-1040, 1991. Liu, T. B., Kim, K., Hsiao, B. S., and Chu, B., Regular and irregular micelles formed by A LEL triblock copolymer in aqueous solution, Polymer, 45, 7989-7993, 2004.

Alakhov, V., Klinski, E., Li, S. M., Pietrzynski, G., Venne, A., Batrakova, E., Bronitch, T., and Kabanov, A., Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials, Colloids and Surfaces B: Biointerfaces, 16, 113-134, 1999.

Lee, H., Zeng, F. Q., Dunne, M., and Allen, C., Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs, Biomacromolecules, 6, 3119-3128, 2005.

Kang, N. and Leroux, J. C., Triblock and star-block copolymers of N-(2-hydroxypropyl) methacry-lamide or N-vinyl-2-pyrrolidone and D,L-lactide: Synthesis and self-assembling properties in water, Polymer, 45, 8967-8980, 2004.

29. Alexandridis, P., Holzwarth, J. F., and Hatton, T. A., Micellization of poly(ethylene oxide)-poly(-propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous-solutions—thermodynamics of copolymer association, Macromolecules, 27, 2414-2425, 1994.

30. Yamamoto, Y., Yasugi, K., Harada, A., Nagasaki, Y., and Kataoka, K., Temperature-related change in the properties relevant to drug delivery of poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles in aqueous milieu, Journal of Controlled Release, 82, 359-371, 2002.

31. Kang, N., Perron, M. E., Prud'homme, R. E., Zhang, Y. B., Gaucher, G., and Leroux, J. C., Stereo-complex block copolymer micelles: Core-shell nanostructures with enhanced stability, Nano Letters, 5, 315-319, 2005.

32. Yokoyama, M., Fukushima, S., Uehara, R., Okamoto, K., Kataoka, K., Sakurai, Y., and Okano, T., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, Journal of Controlled Release, 50, 79-92, 1998.

33. Croy, S. R. and Kwon, G. S., The effects of pluronic block copolymers on the aggregation state of nystatin, Journal of Controlled Release, 95, 161-171, 2004.

34. Batrakova, E., Lee, S., Li, S., Venne, A., Alakhov, V., and Kabanov, A., Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells, Pharmaceutical Research, 16, 1373-1379, 1999.

35. Burt, H. M., Zhang, X. C., Toleikis, P., Embree, L., and Hunter, W. L., Development of copolymers of poly(D,L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel, Colloids and Surfaces B: Biointerfaces, 16, 161-171, 1999.

36. Liu, J., Xiao, Y., and Allen, C., Polymer-drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine, Journal of Pharmaceutical Sciences, 93, 132-143, 2004.

37. Zhang, X. C., Jackson, J. K., and Burt, H. M., Development of amphiphilic diblock copolymers as micellar carriers of taxol, International Journal of Pharmaceutics, 132, 195-206, 1996.

38. Yokoyama, M., Opanasopit, P., Okano, T., Kawano, K., and Maitani, Y., Polymer design and incorporation methods for polymeric micelle carrier system containing water-insoluble anticancer agent camptothecin, Journal of Drug Targeting, 12, 373-384, 2004.

39. Kohori, F., Yokoyama, M., Sakai, K., and Okano, T., Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems, Journal of Controlled Release, 78, 155-163, 2002.

40. Jette, K. K., Law, D., Schmitt, E. A., and Kwon, G. S., Preparation and drug loading of poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles through the evaporation of a cosolvent azeotrope, Pharmaceutical Research, 21, 1184-1191, 2004.

41. Shuai, X., Ai, H., Nasongkla, N., Kim, S., and Gao, J., Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery, Journal of Controlled Release, 98, 415-426, 2004.

42. Zhao, J. X., Allen, C., and Eisenberg, A., Partitioning of pyrene between "crew cut" block copolymer micelles and H2O/DMF solvent mixtures, Macromolecules, 30, 7143-7150, 1997.

43. Sharma, P. K. and Bhatia, S. R., Effect of anti-inflammatories on pluronic (R) F127: Micellar assembly, gelation and partitioning, International Journal of Pharmaceutics, 278, 361-377, 2004.

44. Barreiro-Iglesias, R., Bromberg, L., Temchenko, M., Hatton, T. A., Concheiro, A., and Alvarez-Lorenzo, C., Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers, Journal of Controlled Release, 97, 537-549, 2004.

45. Lim Soo, P., Luo, L., Maysinger, D., and Eisenberg, A., Incorporation and release of hydrophobic probes in biocampatible polycaprolactone-block-poly(ethylene oxide) micelles: Implications for drug delivery, Langmuir, 18, 9996-10004, 2002.

46. Letchford, K., Zastre, J., Liggins, R., and Burt, H., Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers, Colloids and Surfaces B: Biointerfaces, 35, 81-91, 2004.

47. Choucair, A. and Eisenberg, A., Interfacial solubilization of model amphiphilic molecules in block copolymer micelles, Journal of the American Chemical Society, 125, 11993-12000, 2003.

Goldenberg, M. S., Bruno, L. A., and Rennwantz, E. L., Determination of solubilization sites and efficiency of water-insoluble agents in ethylene oxide-containing nonionic micelles, Journal of Colloid and Interface Science, 158, 351-363, 1993.

Nagarajan, R., Solubilization of "guest" molecules into polymeric aggregates, Polymers for Advanced Technologies, 12, 23-43, 2001.

Nagarajan, R. and Ganesh, K., Comparison of solubilization of hydrocarbons in (PEO-PPO) diblock versus (PEO-PPO-PEO) triblock copolymer micelles, Journal of Colloid and Interface Science, 184, 489-499, 1996.

Kozlov, M. Y., Melik-Nubarov, N. S., Batrakova, E. V., and Kabanov, A. V., Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes, Macromolecules, 33, 3305-3313, 2000.

Xing, L. and Mattice, W. L., Strong solubilization of small molecules by triblock-copolymer micelles in selective solvents, Macromolecules, 30, 1711-1717, 1997.

Teng, Y., Morrison, M. E., Munk, P., Webber, S. E., and Prochazka, K., Release kinetics studies of aromatic molecules into water from block polymer micelles, Macromolecules, 31, 3578-3587, 1998. Lin, W. J., Juang, L. W., and Lin, C. C., Stability and release performance of a series of pegylated copolymeric micelles, Pharmaceutical Research, 20, 668-673, 2003.

Gadelle, F., Koros, W. J., and Schechter, R. S., Solubilization of aromatic solutes in block copoly-mers, Macromolecules, 28, 4883-4892, 1995.

Lee, J., Cho, E. C., and Cho, K., Incorporation and release behavior of hydrophobic drug in func-tionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles, Journal of Controlled Release, 94, 323-335, 2004.

Lavasanifar, A., Samuel, J., and Kwon, G. S., Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method: Effect on the solubil-ization and haemolytic activity of amphotericin B, Journal of Controlled Release, 77, 155-160, 2001.

Adams, M. L. and Kwon, G. S., Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles: Effects of acyl chain length, Journal of Controlled Release, 87, 23-32, 2003. Oh, K. T., Bronich, T. K., and Kabanov, A. V., Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic pluronic((R)) block copolymers, Journal of Controlled Release, 94, 411-422, 2004.

Yokoyama, M., Satoh, A., Sakurai, Y., Okano, T., Matsumura, Y., Kakizoe, T., and Kataoka, K., Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size, Journal of Controlled Release, 55, 219-229, 1998.

Bromberg, L. and Magner, E., Release of hydrophobic compounds from micellar solutions of hydrophobically modified polyelectrolytes, Langmuir, 15, 6792-6798, 1999.

Kim, S. Y., Ha, J. C., and Lee, Y. M., Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(epsilon-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. II. Thermo-

responsive drug release behaviors, Journal of Controlled Release, 65, 345-358, 2000.

Kim, S. Y., Kim, J. H., Kim, D., An, J. H., Lee, D. S., and Kim, S. C., Drug-releasing kinetics of

MPEG/PLLA block copolymer micelles with different PLLA block lengths, Journal of Applied

Polymer Science, 82, 2599-2605, 2001.

Cho, Y. W., Lee, J., Lee, S. C., Huh, K. M., and Park, K., Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles, Journal of Controlled Release, 97, 249-257, 2004. Lim Soo, P., Lovric, J., Davidson, P., Maysinger, D., and Eisenberg, A., Polycaprolactone-block-poly(ethylene oxide) micelles: A nanodelivery system for 17beta-estradiol, Molecular Pharmacology, 2, 519-527, 2005.

Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R., Biodegradable long-circulating polymeric nanospheres, Science, 263, 1600-1603, 1994. Nah, J. W., Jeong, Y. I., and Cho, C. S., Norfloxacin release from polymeric micelle of poly(gamma-benzyl L-glutamate) poly(ethylene oxide) poly(gamma-benzylL-glutamate) block copolymer, Bulletin of the Korean Chemical Society, 19, 962-967, 1998.

68. Ryu, J., Jeong, Y. I., Kim, I. S., Lee, J. H., Nah, J. W., and Kim, S. H., Clonazepam release from core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolac-tone) triblock copolymers, International Journal of Pharmaceutics, 200, 231-242, 2000.

69. Kim, S. Y., Shin, I. L. G., Lee, Y. M., Cho, C. S., and Sung, Y. K., Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours, Journal of Controlled Release, 51, 13-22, 1998.

70. Nah, J. W., Jeong, Y. I., Cho, C. S., and Kim, S. I., Drug-delivery system based on core-shell-type nanoparticles composed of poly(gamma-benzyl-L-glutamate) and poly(ethylene oxide), Journal of Applied Polymer Science, 75, 1115-1126, 2000.

71. Leroux, J. C., Allemann, E., DeJaeghere, F., Doelker, E., and Gurny, R., Biodegradable nanoparticles—from sustained release formulations to improved site specific drug delivery, Journal of Controlled Release, 39, 339-350, 1996.

72. Kwon, G. S., Naito, M., Kataoka, K., Yokoyama, M., Sakurai, Y., and Okano, T., Block copolymer micelles as vehicles for hydrophobic drugs, Colloids and Surfaces B: Biointerfaces, 2, 429-434, 1994.

73. Saltzman, W. M., Drug delivery: Engineering principles for drug delivery, Topics in Chemical Engineering, Oxford University Press, New York, 372, 2001.

74. Doxorubicin, U.S. National Library of Medicine and National Institutes of Health http://www.nlm.

75. Lipp, H.-P. and Bokemeyer, C., Anticancer drug toxicity, In Anthracyclines and Other Intercalating Agents, Lipp, H. P., Ed., Marcel Dekker Inc., New York, pp. 81-113, 1999.

76. Kwon, G. S., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Biodistribution of micelle-forming polymer-drug conjugates, Pharmaceutical Research, 10, 970-974, 1993.

77. Yoo, H. S. and Park, T. G., Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer, Journal of Controlled Release, 70, 63-70, 2001.

78. Yoo, H. S. and Park, T. G., Folate receptor targeted biodegradable polymeric doxorubicin micelles, Journal of Controlled Release, 96, 273-283, 2004.

79. Rapoport, N., Pitt, W. G., Sun, H., and Nelson, J. L., Drug delivery in polymeric micelles: From in vitro to in vivo, Journal of Controlled Release, 91, 85-95, 2003.

80. Pruitt, J. D. and Pitt, W. G., Sequestration and ultrasound-induced release of doxorubicin from stabilized pluronic P105 micelles, Drug Delivery, 9, 253-258, 2002.

81. Danson, S., Ferry, D., Alakhov, V., Margison, J., Kerr, D., Jowle, D., Brampton, M., Halbert, G., and Ranson, M., Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer, British Journal of Cancer, 90, 2085-2091, 2004.

82. Matsumura, Y., Hamaguchi, T., Ura, T., Muro, K., Yamada, Y., Shimada, Y., Shirao, K., Okusaka, T., Ueno, H., Ikeda, M., and Watanabe, N., Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin, British Journal of Cancer, 91, 1775-1781, 2004.

83. Kwon, G., Suwa, S., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates, Journal of Controlled Release, 29, 17-23, 1994.

84. Dollery, C. T., Therapeutic Drugs, Churchill Livingstone, Edinburgh, 1999.

85. Yokoyama, M., Miyauchi, M., Yamada, N., Okano, T., Sakurai, Y., Kataoka, K., and Inoue, S., Polymer micelles as novel drug carrier—adriamycin-conjugated poly(ethylene glycol) poly(aspartic acid) block copolymer, Journal of Controlled Release, 11, 269-278, 1990.

86. Fukushima, S., Machida, M., Akutsu, T., Skimizu, K., Tanaka, S., Okamoto, K., and Mashiba, H., Roles of adriamycin and adriamycin dimer in antitumor activity of the polymeric micelle carrier system, Colloids and Surfaces B: Biointerfaces, 16, 227-236, 1999.

87. Paclitaxel, RxList Inc., 2005

88. Liggins, R. T., Hunter, W. L., and Burt, H. M., Solid-state characterization of paclitaxel, Journal of Pharmaceutical Sciences, 86, 1458-1463, 1997.

89. Estimated by CAChe 6.1 (computer-aided molecular design modeling software).

90. Kim, T. Y., Kim, D. W., Chung, J. Y., Shin, S. G., Kim, S. C., Heo, D. S., Kim, N. K., and Bang, Y. J., Phase I and pharmacokinetic study of genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies, Clinical Cancer Research, 10, 3708-3716, 2004.

Liggins, R. T. and Burt, H. M., Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations, Advanced Drug Delivery Reviews, 54, 191-202, 2002.

Le Garrec, D., Gori, S., Luo, L., Lessard, D., Smith, D. C., Yessine, M. A., Ranger, M., and Leroux, J. C., Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: In vitro and in vivo evaluation, Journal of Controlled Release, 99, 83-101, 2004.

Shuai, X., Merdan, T., Schaper, A. K., Xi, F., and Kissel, T., Core-cross-linked polymeric micelles as paclitaxel carriers, Bioconjugate Chemistry, 15, 441-448, 2004.

Kim, S. Y. and Lee, Y. M., Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers, Biomaterials, 22, 1697-1704, 2001.

Park, E. K., Lee, S. B., and Lee, Y. M., Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs, Biomaterials, 26, 1053-1061, 2005. Park, S. R., Oh, D. Y., Kim, D. W., Kim, T. Y., Heo, D. S., Bang, Y. J., Kim, N. K., Kang, W.-K., Kim, H.-T., Im, S.-A., Kim, J.-H., and Kim, H.-K., A multi-center, late phase II clinical trial of genexol (paclitaxel) and cisplatin for patients with advanced gastric cancer, Oncology Reports, 12, 1059-1064, 2004.

Kim, S. C., Kim, D. W., Shim, Y. H., Bang, J. S., Oh, H. S., Wan Kim, S., and Seo, M. H., In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy, Journal ofControlled Release, 72, 191-202, 2001.

Yu, J. J., Jeong, Y. I., Shim, Y. H., and Lim, G. T., Preparation of core-shell type nanoparticles of diblock copolymers of poly(L-lactide)/poly(ethylene glycol) and their characterization in vitro, Journal of Applied Polymer Science, 85, 2625-2634, 2002.

Hamaguchi, T., Matsumura, Y., Suzuki, M., Shimizu, K., Goda, R., Nakamura, I., Nakatomi, I., Yokoyama, M., Kataoka, K., and Kakizoe, T., NK105, a paclitaxel-incorporating micellar nanopar-ticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel, British Journal of Cancer, 92, 1240-1246, 2005.

Watanabe, M., Kawano, K., Yokoyama, M., Opanasopit, P., Okano, T., and Maitani, Y., Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability, International Journal of Pharmaceutics, 308, 183-189, 2006.

Nishiyama, N. and Kataoka, K., Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiammineplatinum(II) in the core, Journal of Controlled Release, 74, 83-94, 2001.

Uchino, H., Matsumura, Y., Negishi, T., Koizumi, F., Hayashi, T., Honda, T., Nishiyama, N., Kataoka, K., Naito, S., and Kakizoe, T., Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats, British Journal of Cancer, 93, 678-687, 2005. Maysinger, D., Berezovska, O., Savic, R., Lim Soo, P., and Eisenberg, A., Block copolymers modify the internalization of micelle-incorporated probes into neural cells, Biochimica et Biophysica Acta, 1539, 205-217, 2001.

Allen, C., Yu, Y., Eisenberg, A., and Maysinger, D., Cellular internalization of PCL(20)-b-PEO(44) block copolymer micelles, Biochimica et Biophysica Acta, 1421, 32-38, 1999. Savic, R., Luo, L., Eisenberg, A., and Maysinger, D., Micellar nanocontainers distribute to defined cytoplasmic organelles, Science, 300, 615-618, 2003.

Luo, L., Tam, J., Maysinger, D., and Eisenberg, A., Cellular internalization of poly(ethylene oxide)-b-poly(epsilon-caprolactone) diblock copolymer micelles, Bioconjugate Chemistry, 13, 1259-1265, 2002.

Zastre, J., Jackson, J., and Burt, H., Evidence for modulation of P-glycoprotein-mediated efflux by methoxypolyethylene glycol-block-polycaprolactone amphiphilic diblock copolymers, Pharmaceutical Research, 21, 1489-1497, 2004.

Alakhov, V., Moskaleva, E., Batrakova, E. V., and Kabanov, A. V., Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer, Bioconjugate Chemistry, 7, 209-216, 1996.

109. Batrakova, E. V., Li, S., Elmquist, W. F., Miller, D. W., Alakhov, V. Y., and Kabanov, A. V., Mechanism of sensitization of MDR cancer cells by pluronic block copolymers: Selective energy depletion, British Journal of Cancer, 85, 1987-1997, 2001.

110. Batrakova, E. V., Han, H. Y., Alakhov, V., Miller, D. W., and Kabanov, A. V., Effects of pluronic block copolymers on drug absorption in Caco-2 cell monolayers, Pharmaceutical Research, 15, 850-855, 1998.

111. Zastre, J., Jackson, J., Bajwa, M., Liggins, R., Iqbal, F., and Burt, H., Enhanced cellular accumulation of a P-glycoprotein substrate, rhodamine-123, by Caco-2 cells using low molecular weight methoxypolyethylene glycol-block-polycaprolactone diblock copolymers, European Journal of Pharmaceutics and Biopharmaceutics, 54, 299-309, 2002.

112. Robinson, J. R. and Lee, V. H. L., Eds., Controlled drug delivery: Fundamentals and applications, Drugs and the Pharmaceutical Sciences, Vol. 29, Marcel Dekker, New York, pp. xix, 716, 1987.

113. Pastan, I. H. and Willingham, M. C., Eds., Endocytosis, Plenum Press, New York, pp. xviii, 326, 1985.

114. Torchilin, V. P., Targeted polymeric micelles for delivery of poorly soluble drugs, Cellular and Molecular Life Sciences, 61, 2549-2559, 2004.

115. Zeng, F., Lee, H., and Allen, C., Epidermal growth factor-conjugated poly(ethylene glycol)-block-poly(S-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics, Bioconjugate Chemistry, 2006, in Press.

116. Kakizawa, Y. and Kataoka, K., Block copolymer micelles for delivery of gene and related compounds, Advanced Drug Delivery Reviews, 54, 203-222, 2002.

117. Muniruzzaman, M., Marin, A., Luo, Y., Prestwich, G. D., Pitt, W. G., Husseini, G., and Rapoport, N. Y., Intracellular uptake of pluronic copolymer: Effects of the aggregation state, Colloids and Surfaces B: Biointerfaces, 25, 233-241, 2002.

118. Rapoport, N., Marin, A., Luo, Y., Prestwich, G. D., and Muniruzzaman, M. D., Intracellular uptake and trafficking of pluronic micelles in drug-sensitive and MDR cells: Effect on the intracellular drug localization, Journal of Pharmaceutical Science, 91, 157-170, 2002.

119. Husseini, G. A., Runyan, C. M., and Pitt, W. G., Investigating the mechanism of acoustically activated uptake of drugs from pluronic micelles, BMC Cancer, 2, 20, 2002.

120. Liu, J., Zeng, F., and Allen, C., Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent, Journal of Controlled Release, 103, 481-497, 2005.

121. Pante, N. and Kann, M., Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm, Molecular Biology of the Cell, 13, 425-434, 2002.

122. Liu, S. Q., Tong, Y. W., and Yang, Y. Y., Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions, Biomaterials, 26, 5064-5074, 2005.

123. Kabanov, A. V., Batrakova, E. V., and Miller, D. W., Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier, Advanced Drug Delivery Reviews, 55, 151-164, 2003.

124. Batrakova, E. V., Li, S., Miller, D. W., and Kabanov, A. V., Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers, Pharmaceutical Research, 16, 1366-1372, 1999.

125. Kabanov, A. V., Batrakova, E. V., and Alakhov, V. Y., Pluronic block copolymers for overcoming drug resistance in cancer, Advanced Drug Delivery Reviews, 54, 759-779, 2002.

126. Kabanov, A. V., Batrakova, E. V., Meliknubarov, N. S., Fedoseev, N. A., Dorodnich, T. Y., Alakhov, V. Y., Chekhonin, V. P., Nazarova, I. R., and Kabanov, V. A., A new class of drug carriers—micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain, Journal of Controlled Release, 22, 141-157, 1992.

127. Miller, D. W., Batrakova, E. V., and Kabanov, A. V., Inhibition of multidrug resistance-associated protein (MRP) functional activity with pluronic block copolymers, Pharmaceutical Research, 16, 396-401, 1999.

128. Rapoport, N., Marin, A. P., and Timoshin, A. A., Effect of a polymeric surfactant on electron transport in HL-60 cells, Archives of Biochemistry and Biophysics, 384, 100-108, 2000.

Slepnev, V. I., Kuznetsova, L. E., Gubin, A. N., Batrakova, E. V., Alakhov, V., and Kabanov, A. V., Micelles of poly(oxyethylene)-poly(oxypropylene) block copolymer (pluronic) as a tool for low-molecular compound delivery into a cell: Phosphorylation of intracellular proteins with micelle incorporated [gamma-32P]ATP, Biochemistry International, 26, 587-595, 1992. Regev, R., Assaraf, Y. G., and Eytan, G. D., Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug-resist-ant cells, European Journal of Biochemistry, 259, 18-24, 1999.

Yamamoto, Y., Nagasaki, Y., Kato, Y., Sugiyama, Y., and Kataoka, K., Long-circulating poly(-ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge, Journal of Controlled Release, 77, 27-38, 2001.

Poznansky, M. J. and Juliano, R. L., Biological approaches to the controlled delivery of drugs: A critical review, Pharmacological Reviews, 36, 277-336, 1984.

Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B., and Papahadjopoulos, D., Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors, Pharmacological Reviews, 51, 691-743, 1999.

Patel, H. M., Serum opsonins and liposomes: Their interaction and opsonophagocytosis, Critical Reviews in Therapeutic Drug Carrier Systems, 9, 39-90, 1992.

Moghimi, S. M. and Patel, H. M., Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes, FEBS Letters, 233, 143-147, 1988.

Ulrich, F. and Zilversmit, D. B., Release from alveolar macrophages of an inhibitor of phagocytosis, American Journal of Physiology, 218, 1118-1127, 1970.

Dunn, S. E., Brindley, A., Davis, S. S., Davies, M. C., and Illum, L., Polystyrene-poly(ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution, Pharmaceutical Research, 11, 1016-1022, 1994.

Batrakova, E. V., Li, S., Li, Y., Alakhov, V. Y., Elmquist, W. F., and Kabanov, A. V., Distribution kinetics of a micelle-forming block copolymer pluronic P85, Journal of Controlled Release, 100, 389-397, 2004.

Grindel, J. M., Jaworski, T., Piraner, O., Emanuele, R. M., and Balasubramanian, M., Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans, Journal of Pharmaceutical Science, 91, 1936-1947, 2002.

Novakova, K., Laznicek, M., Rypacek, F., and Machova, L., I-125-labeled PLA/PEO block copolymer: Biodistribution studies in rats, Journal of Bioactive and Compatible Polymers, 17, 285-296, 2002.

Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y., and Nakabayashi, N., Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research, 39, 323-330, 1998.

Devine, D. V. and Marjan, J. M., The role of immunoproteins in the survival of liposomes in the circulation, Critical Reviews in Therapeutic Drug Carrier Systems, 14, 105-131, 1997. Patel, H. M. and Moghimi, S. M., Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—the concept of tissue specificity, Advanced Drug Delivery Reviews, 32, 45-60, 1998.

Tan, J. S., Butterfield, D. E., Voycheck, C. L., Caldwell, K. D., and Li, J. T., Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats, Biomaterials, 14, 823-833, 1993.

Allen, C., Maysinger, D., and Eisenberg, A., Nano-engineering block copolymer aggregates for drug delivery, Colloids and Surfaces B: Biointerfaces, 16, 3-27, 1999.

Seki, J., Sonoke, S., Saheki, A., Koike, T., Fukui, H., Doi, M., and Mayumi, T., Lipid transfer protein transports compounds from lipid nanoparticles to plasma lipoproteins, International Journal of Pharmaceutics, 275, 239-248, 2004.

Ramaswamy, M., Zhang, X., Burt, H. M., and Wasan, K. M., Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers, Journal of Pharmaceutical Science, 86, 460-464, 1997.

148. Mizumura, Y., Matsumura, Y., Hamaguchi, T., Nishiyama, N., Kataoka, K., Kawaguchi, T., Hrushesky, W. J., Moriyasu, F., and Kakizoe, T., Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity, Japan Journal of Cancer Research, 92, 328-336, 2001.

149. Gianni, L., Kearns, C. M., Giani, A., Capri, G., Vigano, L., Lacatelli, A., Bonadonna, G., and Egorin, M. J., Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans, Journal of Clinical Oncology, 13, 180-190, 1995.

150. Gao, Z. G., Fain, H. D., and Rapoport, N., Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound, Journal of Controlled Release, 102, 203-222, 2005.

151. Husseini, G. A., Myrup, G. D., Pitt, W. G., Christensen, D. A., and Rapoport, N. Y., Factors affecting acoustically triggered release of drugs from polymeric micelles, Journal of Controlled Release, 69, 43-52, 2000.

152. Marin, A., Muniruzzaman, M., and Rapoport, N., Mechanism of the ultrasonic activation of micellar drug delivery, Journal of Controlled Release, 75, 69-81, 2001.

153. Chung, J. E., Yokoyama, M., and Okano, T., Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release, 65, 93-103, 2000.

154. Kohori, F., Sakai, K., Aoyagi, T., Yokoyama, M., Sakurai, Y., and Okano, T., Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropyla-crylamide-b-DL-lactide), Journal of Controlled Release, 55, 87-98, 1998.

155. Chung, J. E., Yokoyama, M., Yamato, M., Aoyagi, T., Sakurai, Y., and Okano, T., Thermo-respon-sive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate), Journal of Controlled Release, 62, 115-127, 1999.

156. Chung, J. E., Yokoyama, M., Aoyagi, T., Sakurai, Y., and Okano, T., Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers, Journal of Controlled Release, 53, 119-130, 1998.

157. Cammas, S., Suzuki, K., Sone, C., Sakurai, Y., Kataoka, K., and Okano, T., Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers, Journal of Controlled Release, 48, 157-164, 1997.

158. Taillefer, J., Jones, M. C., Brasseur, N., van Lier, J. E., and Leroux, J. C., Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs, Journal ofPharmaceutical Science, 89, 52-62, 2000.

159. Houlton, S., Blocking the way forward, 2003 mcblocks.htm.

160. Zhang, G. D., Harada, A., Nishiyama, N., Jiang, D. L., Koyama, H., Aida, T., and Kataoka, K., Polyion complex micelles entrapping cationic dendrimer porphyrin: Effective photosensitizer for photodynamic therapy of cancer, Journal of Controlled Release, 93, 141-150, 2003.

161. Dolmans, D. E., Fukumura, D., and Jain, R. K., Photodynamic therapy for cancer, Nature Reviews Cancer, 3, 380-387, 2003.

162. van Nostrum, C. F., Polymeric micelles to deliver photosensitizers for photodynamic therapy, Advanced Drug Delivery Reviews, 56, 9-16, 2004.

163. Jang, W. D., Nishiyama, N., Zhang, G. D., Harada, A., Jiang, D. L., Kawauchi, S., Morimoto, Y., Kikuchi, M., Koyama, H., Aida, T., and Kataoka, K., Supramolecular nanocarrier of anionic dendrimer porphyrins with cationic block copolymers modified with polyethylene glycol to enhance intracellular photodynamic efficacy, Angewandte Chemie International Edition in English, 44, 419-423, 2005.

164. Ideta, R., Tasaka, F., Jang, W. D., Nishiyama, N., Zhang, G. D., Harada, A., Yanagi, Y., Tamaki, Y., Aida, T., and Kataoka, K., Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer, Nano Letters, 5, 2426-2431, 2005.

165. Taillefer, J., Brasseur, N., van Lier, J. E., Lenaerts, V., Le Garrec, D., and Leroux, J. C., In-vitro and in-vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model, Journal of Pharmacy and Pharmacology, 53, 155-166, 2001.

Le Garrec, D., Taillefer, J., Van Lier, J. E., Lenaerts, V., and Leroux, J. C., Optimizing pH-respon-sive polymeric micelles for drug delivery in a cancer photodynamic therapy model, Journal ofDrug Targeting, 10, 429-437, 2002.

Woodburn, K. W., Vardaxis, N. J., Hill, J. S., Kaye, A. H., Reiss, J. A., and Phillips, D. R., Evaluation of porphyrin characteristics required for photodynamic therapy, Photochemistry and Photobiology, 55, 697-704, 1992.

Mamot, C., Drummond, D. C., Greiser, U., Hong, K., Kirpotin, D. B., Marks, J. D., and Park, J. W., Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells, Cancer Research, 63, 3154-3161, 2003.

Torchilin, V. P., Lukyanov, A. N., Gao, Z. G., and Papahadjopoulos-Sternberg, B., Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs, Proceedings of the National Academy of Sciences of the United States of America, 100, 6039-6044, 2003.

Torchilin, V. P., Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate, Advanced Drug Delivery Reviews, 57, 95-109, 2005. Farokhzad, O. C., Jon, S. Y., Khadelmhosseini, A., Tran, T. N. T., LaVan, D. A., and Langer, R., Nanopartide-aptamer bioconjugates: A new approach for targeting prostate cancer cells, Cancer Research, 64, 7668-7672, 2004.

Lee, H., Jang, I. H., Ryu, S. H., and Park, T. G., N-terminal site-specific mono-PEGylation of epidermal growth factor, Pharmaceutical Research, 20, 818-825, 2003.

Mendelsohn, J. and Baselga, J., The EGF receptor family as targets for cancer therapy, Oncogene, 19, 6550-6565, 2000.

Wakebayashi, D., Nishiyama, N., Yamasaki, Y., Itaka, K., Kanayama, N., Harada, A., Nagasaki, Y., and Kataoka, K., Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: Their preparation and gene transfecting efficiency against cultured HepG2 cells, Journal of Controlled Release, 95, 653-664, 2004.

Yasugi, K., Nakamura, T., Nagasaki, Y., Kato, M., and Kataoka, K., Sugar-installed polymer micelles: Synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end, Macromolecules, 32, 8024-8032, 1999. Jule, E., Nagasaki, Y., and Kataoka, K., Lactose-installed poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study, Bioconjugate Chemistry, 14, 177-186, 2003. Lim, D. W., Yeom, Y. I., and Park, T. G., Poly(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes, Bioconjugate Chemistry, 11, 688-695, 2000.

Kursa, M., Walker, G. F., Roessler, V., Ogris, M., Roedl, W., Kircheis, R., and Wagner, E., Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer, Bioconjugate Chemistry, 14, 222-231, 2003.

Vinogradov, S., Batrakova, E., Li, S., and Kabanov, A., Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells, Bioconjugate Chemistry, 10, 851-860, 1999.

Ogris, M., Walker, G., Blessing, T., Kircheis, R., Wolschek, M., and Wagner, E., Tumor-targeted gene therapy: Strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes, Journal of Controlled Release, 91, 173-181, 2003.

Lee, E. S., Na, K., and Bae, Y. H., Polymeric micelle for tumor pH and folate-mediated targeting, Journal of Controlled Release, 91, 103-113, 2003.

Merdan, T., Callahan, J., Peterson, H., Bakowsky, U., Kopeckova, P., Kissel, T., and Kopecek, J., Pegylated polyethylenimine-Fab' antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells, Bioconjugate Chemistry, 14, 989-996, 2003.

Kabanov, A. V. and Alakhov, V. Y., Amphiphilic Block Copolymers: Self-Assemble and Applications In Micelles of Amphiphilic Block Copolymers as Vehicles for Drug Delivery, Alexandris, P. and Lindman, B., Eds., Elsevier, The Netherlands, 1997.

Lin, S. Y., Makino, K., Xia, W. Y., Matin, A., Wen, Y., Kwong, K. Y., Bourguignon, L., and Hung, M. C., Nuclear localization of EGF receptor and its potential new role as a transcription factor, Nature Cell Biology, 3, 802-808, 2001.

185. Kircheis, R., Kichler, A., Wallner, G., Kursa, M., Ogris, M., Felzmann, T., Buchberger, M., and Wagner, E., Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery, Gene Therapy, 4, 409-418, 1997.

186. Blessing, T., Kursa, M., Holzhauser, R., Kircheis, R., and Wagner, E., Different strategies for formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery, Biocon-jugate Chemistry, 12, 529-537, 2001.

187. Gillies, E. R. and Frechet, J. M. J., Development of acid-sensitive copolymer micelles for drug delivery, Pure and Applied Chemistry, 76, 1295-1307, 2004.

188. Sant, V. P., Smith, D., and Leroux, J. C., Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies, Journal of Controlled Release, 104, 289-300, 2005.

189. Tannock, I. F. and Rotin, D., Acid pH in tumors and its potential for therapeutic exploitation, Cancer Research, 49, 4373-4384, 1989.

190. Lee, E. S., Na, K., and Bae, Y. H., Super pH-sensitive multifunctional polymeric micelle, Nano Letters, 5, 325-329, 2005.

191. Bae, Y., Fukushima, S., Harada, A., and Kataoka, K., Design of environment-sensitive supramole-cular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change, Angewandte Chemie International Edition in English, 42,4640-4643, 2003.

192. Bae, Y., Nishiyama, N., Fukushima, S., Koyama, H., Yasuhiro, M., and Kataoka, K., Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy, Bioconjugate Chemistry, 16, 122-130, 2005.

193. Lee, E. S., Shin, H. J., Na, K., and Bae, Y. H., Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization, Journal of Controlled Release, 90, 363-374, 2003.

194. Gao, Z. G., Lee, D. H., Kim, D. I., and Bae, Y. H., Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice, Journal of Drug Targeting, 13, 391-397, 2005.

Diabetes Sustenance

Diabetes Sustenance

Get All The Support And Guidance You Need To Be A Success At Dealing With Diabetes The Healthy Way. This Book Is One Of The Most Valuable Resources In The World When It Comes To Learning How Nutritional Supplements Can Control Sugar Levels.

Get My Free Ebook

Post a comment