References

1. Ruoslahti, E., Antiangiogenics meet nanotechnology, Cancer Cell, 2, 97-98, 2002.

2. Derfus, A. M., Chan, W. C. W., and Bhatia, S. N., Intracellular delivery of quantum dots for live cell labeling and organelle tracking, Advanced Materials, 16, 961-966, 2004.

3. Harisinghani, M. G. and Weissleder, R., Sensitive, noninvasive detection of lymph node metastases, Plos Medicine, 1, 202-209, 2004.

4. Majoros, I. J., Thomas, T. P., Mehta, C. B., and Baker, J. R., Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy, Journal of Medicinal Chemistry, 48, 5892-5899, 2005.

5. Sengupta, S. et al., Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system, Nature, 436, 568-572, 2005.

6. Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N., and Ruoslahti, E., Nanocrystal targeting in vivo, Proceedings of the National Academy of Sciences of the United States of America, 99, 12617-12621, 2002.

7. Thomas, T. P. et al., In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles, Biomacromolecules, 5, 2269-2274, 2004.

8. Gordon, A. N. et al., Recurrent epithelial ovarian carcinoma: A randomized phase III study of pegy-lated liposomal doxorubicin versus topotecan, Journal of Clinical Oncology, 19, 3312-3322, 2001.

9. Ruoslahti, E., Drug targeting to specific vascular sites, Drug Discovery Today, 7, 1138-1143, 2002.

10. Allen, T. M., Charrois, G. J. R., and Sapra, P., Recent advances in passively and actively targeted liposomal drug delivery systems for the treatment of cancer, Abstracts of Papers of the American Chemical Society, 226, U458, 2003.

11. Allen, T. M. and Cullis, P. R., Drug delivery systems: Entering the mainstream, Science, 303, 1818-1822, 2004.

12. Wickham, T. J., Targeting adenovirus, Gene Therapy, 7, 110-114, 2000.

13. Ruoslahti, E. and Rajotte, D., An address system in the vasculature of normal tissues and tumors, Annual Review of Immunology, 18, 813-827, 2000.

14. Jain, R. K., Delivery of molecular and cellular medicine to solid tumors, Advanced Drug Delivery Reviews, 46, 149-168, 2001.

15. Jain, R. K., Delivery of molecular and cellular medicine to solid tumors, Journal of Controlled Release, 53, 49-67, 1998.

16. Jain, R. K., Delivery of molecular and cellular medicine to solid tumors, Microcirculation—London, 4, 3-23, 1997.

17. Satchi-Fainaro, R. et al., Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470, Nature Medicine, 10, 255-261, 2004.

18. Matsumura, Y. and Maeda, H., A new concept for macromolecular therapeutics in cancer-chemotherapy—mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs, Cancer Research, 46, 6387-6392, 1986.

19. Tabata, T., Murakami, Y., and Ikada, Y., Tumor accumulation of poly(vinyl alcohol) of different sizes after intravenous injection, Journal of Controlled Release, 50, 123-133, 1998.

20. Moghimi, S. M., Hunter, A. C., and Murray, J. C., Long-circulating and target-specific nanoparticles: Theory to practice, Pharmacological Reviews, 53, 283-318, 2001.

21. Moghimi, S. M. and Hunter, A. C., Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups, Pharmaceutical Research, 18, 1-8, 2001.

22. Nicolazzi, C. et al., Anionic polyethyleneglycol lipids added to cationic lipoplexes increase their plasmatic circulation time, Journal of Controlled Release, 88, 429-443, 2003.

23. Ruoslahti, E., Specialization of tumour vasculature, Nature Reviews Cancer, 2, 83-90, 2002.

24. Sahoo, S. K. and Labhasetwar, V., Nanotech approaches to delivery and imaging drug, Drug Discovery Today, 8, 1112-1120, 2003.

25. Wickline, S. A. and Lanza, G. M., Nanotechnology for molecular imaging and targeted therapy, Circulation, 107, 1092-1095, 2003.

26. Stella, B. et al., Design of folic acid-conjugated nanoparticles for drug targeting, Journal of Pharmaceutical Sciences, 89, 1452-1464, 2000.

27. Lockman, P. R. et al., Brain uptake of thiamine-coated nanoparticles, Journal of Controlled Release, 93, 271-282, 2003.

28. Dubey, P. K., Mishra, V., Jain, S., Mahor, S., and Vyas, S. P., Liposomes modified with cyclic RGD peptide for tumor targeting, Journal of Drug Targeting, 12, 257-264, 2004.

29. Kirpotin, D. et al., Sterically stabilized Anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro, Biochemistry, 36, 66-75, 1997.

30. Li, L. Y. et al., A novel antiangiogenesis therapy using an integrin antagonist or anti-FLK-1 antibody coated Y-90-labeled nanoparticles, International Journal of Radiation Oncology Biology Physics, 58, 1215-1227, 2004.

31. Farokhzad, O. C. et al., Nanopartide-aptamer bioconjugates: A new approach for targeting prostate cancer cells, Cancer Research, 64, 7668-7672, 2004.

32. Allen, T. M., Sapra, P., Moase, E., Moreira, J., and Iden, D., Adventures in targeting, Journal of Liposome Research, 12, 5-12, 2002.

33. Christian, S. et al., Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels, Journal of Cell Biology, 163, 871-878, 2003.

34. Porkka, K., Laakkonen, P., Hoffman, J. A., Bernasconi, M., and Ruoslahti, E., A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo, Proceedings of the National Academy of Sciences of the United States of America, 99, 7444-7449, 2002.

35. Pack, D. W., Hoffman, A. S., Pun, S., and Stayton, P. S., Design and development of polymers for gene delivery, Nature Reviews Drug Discovery, 4, 581-593, 2005.

36. Frankel, A. D. and Pabo, C. O., Cellular uptake of the tat protein from human immunodeficiency virus, Cell, 55, 1189-1193, 1988.

37. Wadia, J. S., Stan, R. V., and Dowdy, S. F., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis, Nature Medicine, 10, 310-315, 2004.

38. Kircher, M. F. et al., In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors, Cancer Research, 63, 6838-6846, 2003.

39. Weissleder, R., Bogdanov, A., Neuwelt, E. A., and Papisov, M., Long-circulating iron-oxides for Mr-imaging, Advanced Drug Delivery Reviews, 16, 321-334, 1995.

40. Wagner, E., Application of membrane-active peptides for nonviral gene delivery, Advanced Drug Delivery Reviews, 38, 279-289, 1999.

41. Plank, C., Oberhauser, B., Mechtler, K., Koch, C., and Wagner, E., The influence of endosome-disruptive peptides on gene-transfer using synthetic virus-like gene-transfer systems, Journal of Biological Chemistry, 269, 12918-12924, 1994.

42. Mastrobattista, E., Crommelin, D. J. A., Wilschut, J., and Storm, G., Targeted liposomes for delivery of protein-based drugs into the cytoplasm of tumor cells, Journal of Liposome Research, 12,57-65, 2002.

43. Kakudo, T. et al., Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: An artificial viral-like delivery system, Biochemistry, 43, 5618-5628, 2004.

44. Lanza, G. M. et al., Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery, Current Pharmaceutical Biotechnology, 5, 495-507, 2004.

45. West, J. L. and Halas, N. J., Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics, Annual Review of Biomedical Engineering, 5, 285-292, 2003.

46. Stark, D. D. et al., Superparamagnetic iron-oxide—clinical-application as a contrast agent for MR imaging of the liver, Radiology, 168, 297-301, 1988.

47. Choi, H., Choi, S. R., Zhou, R., Kung, H. F., and Chen, I. W., Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery, Academic Radiology, 11, 996-1004, 2004.

48. Huh, Y. M. et al., In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals, Journal of the American Chemical Society, 127, 12387-12391, 2005.

49. Wang, S. J., Brechbiel, M., and Wiener, E. C., Characteristics of a new MRI contrast agent prepared from polypropyleneimine dendrimers, generation 2, Investigative Radiology, 38, 662-668, 2003.

50. Lanza, G. M. et al., Molecular imaging and targeted drug delivery with a novel, ligand-directed paramagnetic nanoparticle technology, Academic Radiology, 9, S330-S331, 2002.

51. Loo, C. et al., Nanoshell-enabled photonics-based imaging and therapy of cancer, Technology in Cancer Research & Treatment, 3, 33-40, 2004.

52. Sokolov, K. et al., Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles, Cancer Research, 63, 1999-2004, 2003.

53. Loo, C., Lowery, A., Halas, N., West, J., and Drezek, R., Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Letters, 5, 709-711, 2005.

54. Parak, W. J. et al., Biological applications of colloidal nanocrystals, Nanotechnology, 14, R15-R27, 2003.

55. Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K., and Nie, S. M., In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotechnology, 22, 969-976, 2004.

56. Kim, S. et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature Biotechnology, 22, 93-97, 2004.

57. Derfus, A. M., Chan, W. C. W., and Bhatia, S. N., Probing the cytotoxicity of semiconductor quantum dots, Nano Letters, 4, 11-18, 2004.

58. Choi, Y. and Baker, J. R., Targeting cancer cells with DNA-assembled dendrimers—a mix and match strategy for cancer, Cell Cycle, 4, 669-671, 2005.

59. Lu, Y., Yin, Y. D., Mayers, B. T., and Xia, Y. N., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach, Nano Letters, 2, 183-186, 2002.

60. Roy, I. et al., Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anti-cancer drugs: A novel drug-carrier system for photodynamic therapy, Journal of the American Chemical Society, 125, 7860-7865, 2003.

61. Lanza, G. M. et al., A novel site-targeted ultrasonic contrast agent with broad biomedical application, Circulation, 94, 3334-3340, 1996.

62. Alkan-Onyuksel, H. et al., Development of inherently echogenic liposomes as an ultrasonic contrast agent, Journal of Pharmaceutical Sciences, 85, 486-490, 1996.

63. Huang, S. L. et al., Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents, Journal of Pharmaceutical Sciences, 90, 1917-1926, 2001.

64. Rabin, O., Perez, J. M., Grimm, J., Wojtkiewicz, G., and Weissleder, R., An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles, Nature Materials, 5, 118-122, 2006.

65. Kelly, K. A. et al., Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle, Circulation Research, 96, 327-336, 2005.

66. Morawski, A. M., Lanza, G. A., and Wickline, S. A., Targeted contrast agents for magnetic resonance imaging and ultrasound, Current Opinion in Biotechnology, 16, 89-92, 2005.

67. Perez, J. M., Josephson, L., O'Loughlin, T., Hogemann, D., and Weissleder, R., Magnetic relaxation switches capable of sensing molecular interactions, Nature Biotechnology, 20, 816-820, 2002.

68. Perez, J. M., Simeone, F. J., Saeki, Y., Josephson, L., and Weissleder, R., Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media, Journal of the American Chemical Society, 125, 10192-10193, 2003.

69. Perez, J. M., Simeone, F. J., Tsourkas, A., Josephson, L., and Weissleder, R., Peroxidase substrate nanosensors for MR imaging, Nano Letters, 4, 119-122, 2004.

70. Georganopoulou, D. G. et al., Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease, Proceedings of the National Academy of Sciences of the United States of America, 102, 2273-2276, 2005.

71. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., and Storhoff, J. J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 382, 607-609, 1996.

72. Stevens, M. M., Flynn, N. T., Wang, C., Tirrell, D. A., and Langer, R., Coiled-coil peptide-based assembly of gold nanoparticles, Advanced Materials, 16, 915-918, 2004.

73. Harris, T. J., von Maltzahn, G., Derfus, A. M., Ruoslahti, E., and Bhatia, S. N., Proteolytic actuation of nanoparticle self-assembly, Angewandte Chemie-International Edition, In press.

74. Muller, R. H. and Keck, C. M., Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles, Journal of Biotechnology, 113, 151-170, 2004.

75. Duncan, R., The dawning era of polymer therapeutics, Nature Reviews Drug Discovery, 2, 347-360, 2003.

76. Sessa, G. and Weissman, G., Phospholipid spherules (liposomes) as a model for biological membranes, Journal of Lipid Research, 9(3): 310-318, 1968.

77. Gabizon, A. and Martin, F., Polyethylene glycol coated (pegylated) liposomal doxorubicin— rationale for use in solid tumours, Drugs, 54, 15-21, 1997.

78. Campbell, R. B., Balasubramanian, S. V., and Straubinger, R. M., Influence of cationic lipids on the stability and membrane properties of paclitaxel-containing liposomes, Journal of Pharmaceutical Sciences, 90, 1091-1105, 2001.

Sapra, P. and Allen, T. M., Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anti-cancer drugs targeted to both the CD19 and CD20 epitopes, Clinical Cancer Research, 10, 4893, 2004.

Torchilin, V. P. et al., p-nitrophenylcarbonyl-PEG-PE-liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenyl-carbonyl groups, Biochimica et Biophysica Acta-Biomembranes, 1511, 397-411, 2001. Park, J. W. et al., Tumor targeting using anti-her2 immunoliposomes, Journal of Controlled Release, 74, 95-113, 2001.

Miyamoto, M. et al., Preparation of gadolinium-containing emulsions stabilized with phosphatidyl-choline-surfactant mixtures for neutron-capture therapy, Chemical & Pharmaceutical Bulletin, 47, 203-208, 1999.

Panyam, J. and Labhasetwar, V., Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Advanced Drug Delivery Reviews, 55, 329-347, 2003.

Nakanishi, T. et al., Development of the polymer micelle carrier system for doxorubicin, Journal of Controlled Release, 74, 295-302, 2001.

Yokoyama, M. et al., Selective delivery of adiramycin to a solid tumor using a polymeric micelle carrier system, Journal of Drug Targeting, 7, 171-186, 1999.

Torchilin, V. P., Structure and design of polymeric surfactant-based drug delivery systems, Journal of Controlled Release, 73, 137-172, 2001.

Discher, B. M. et al., Polymersomes: Tough vesicles made from diblock copolymers, Science, 284, 1143-1146, 1999.

Ahmed, F. and Discher, D. E., Self-porating polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-triggered controlled release vesicles, Journal of Controlled Release, 96, 37-53, 2004. Xu, J. P., Ji, J., Chen, W. D., and Shen, J. C., Novel biomimetic polymersomes as polymer therapeutics for drug delivery, Journal of Controlled Release, 107, 502-512, 2005. Patri, A. K., Majoros, I. J., and Baker, J. R., Dendritic polymer macromolecular carriers for drug delivery, Current Opinion in Chemical Biology, 6, 466-471, 2002.

Kojima, C., Kono, K., Maruyama, K., and Takagishi, T., Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anti-cancer drugs, Bioconjugate Chemistry, 11, 910-917, 2000.

Patri, A. K. et al., Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy, Bioconjugate Chemistry, 15, 1174-1181, 2004.

Tripathi, P. K. et al., Dendrimer grafts for delivery of 5-flurouracil, Pharmazie, 57, 261-264, 2002. Quintana, A. et al., Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor, Pharmaceutical Research, 19, 1310-1316, 2002. Vinogradov, S. V., Batrakova, E. V., and Kabanov, A. V., Nanogels for oligonucleotide delivery to the brain, Bioconjugate Chemistry, 15, 50-60, 2004.

Jordan, A., Scholz, R., Wust, P., Fahling, H., and Felix, R., Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 201, 413-419, 1999. Pankhurst, Q. A., Connolly, J., Jones, S. K., and Dobson, J., Applications of magnetic nanoparticles in biomedicine, Journal of Physics D—Applied Physics, 36, R167-R181, 2003. Derfus, A. M. and Bhatia, S. N., Unpublished data.

Rabin, Y., Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? International Journal of Hyperthermia, 18, 194-202, 2002.

Hirsch, L. R. et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proceedings of the National Academy of Sciences of the United States of America, 100, 13549-13554, 2003.

O'Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D., and West, J. L., Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles, Cancer Letters, 209, 171-176, 2004. Plank, C. et al., The magnetofection method: Using magnetic force to enhance gene delivery, Biological Chemistry, 384, 737-747, 2003.

Nishiyama, N. et al., Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy, Bioconjugate Chemistry, 14, 58-66, 2003.

104. Konan, Y. N., Gurny, R., and Allemann, E., State of the art in the delivery of photosensitizers for photodynamic therapy, Journal of Photochemistry and Photobiology B—Biology, 66, 89-106, 2002.

105. Kopelman, R. et al., Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer, Journal of Magnetism and Magnetic Materials, 293, 404-410, 2005.

106. Crowder, K. C. et al., Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: Implications for enhanced local drug delivery, Ultrasound in Medicine and Biology, 31, 1693-1700, 2005.

107. Gao, Z. G., Fain, H. D., and Rapoport, N., Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound, Journal of Controlled Release, 102, 203-222, 2005.

108. Hainfeld, J. F., Slatkin, D. N., and Smilowitz, H. M., The use of gold nanoparticles to enhance radiotherapy in mice, Physics in Medicine and Biology, 49, N309-N315, 2004.

109. Haag, R., Supramolecular drug-delivery systems based on polymeric core-shell architectures, Angewandte Chemie-International Edition, 43, 278-282, 2004.

110. Murthy, N., Campbell, J., Fausto, N., Hoffman, A. S., and Stayton, P. S., Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligo-nucleotides, Journal of Controlled Release, 89, 365-374, 2003.

111. Forster, S., Abetz, V., and Muller, A. H. E., Polyelectrolyte block copolymer micelles, Polyelec-trolytes with Defined Molecular Architecture Ii, 166, 173-210, 2004.

Neutron Capture Therapy of Cancer: Nanoparticles and High Molecular Weight Boron Delivery Agents

Diabetes Sustenance

Diabetes Sustenance

Get All The Support And Guidance You Need To Be A Success At Dealing With Diabetes The Healthy Way. This Book Is One Of The Most Valuable Resources In The World When It Comes To Learning How Nutritional Supplements Can Control Sugar Levels.

Get My Free Ebook


Post a comment