Nanotechnology and Our Energy Challenge

Richard Smalley

I've increasingly begun to believe that a grand challenge before usthe world and humanityis what I call "the terawatt challenge." I've been looking into the energy issue and I've been on a quest for terawatts, or trillions of watts of electricity. What I'm looking for is to solve what I believe is the most important problem facing humanity, the problem of generating energy of the magnitude that we will need in this century for what could very well turn out to be ten billion people on the planet.

Energy is the single most important challenge facing humanity today. As we peak in oil production and worry about how long natural gas will last, life must go on. Somehow we must find the basis for energy prosperity for the twenty-first century. We should assume that by the middle of this century we will need to at least double world energy production from its current level, with most of this coming from some clean, sustainable, carbon dioxidefree source. For worldwide peace and prosperity, it must be cheap.

Energy is a $3 trillion a year enterprise, by far the biggest enterprise of humankind. The second most important is agriculture. It used to be that agriculture was almost everything, but agriculture is now only half of energy. All of Defense, both in the United States and around the planet, is only $0.7 trillion. I want to find a new oil, an energy source that will do for this century what oil did in the last century.

I have asked audiences across the country, "What do you think deserves to be on the list of world problems?" My hypothesis is that if you gather any group of people together the word energy will always appear on this list. I've done this with fourteen independent audiences, and energy, phrased in one way or another, is one of the first problems suggested.

World Problems

1.

Energy

2.

Water

3.

Food

4.

Environment

5.

Poverty

6.

Terrorism and war

7.

Disease

8.

Education

9.

Democracy

10. Population

My second hypothesis is that if you solve the energy problem you will find that at least five of the remaining nine problems on the list now have a path to an answer that's acceptable, whereas in the absence of solving the energy problem, it is difficult, if not impossible in most cases, to have imagined an answer.

Water is a very brutal problem. Either you've got it or you don't. Luckily, on our planet, there's plenty of water. In fact, we probably have more water than anything else. But it has salt in it, and it's often thousands of miles away from where we need it. We need it in vast amounts, hundreds of millions of gallons a day. We can take the salt out of the water. There's no doubt some nanotechnology that will do it at 100 percent efficiency or close to it, or you can just boil the water. You can do it if you find the energy. And you've got to put it in a pipe and pump it to where you need it, which might be thousands of miles away. We can make pipes and we know how to pump them, but it costs energy to make them, it costs energy to maintain them, and energy to pump the water from here to there. We can do it. If we have the energy, we can solve the water problem. Just solve it, for ten billion people everywhere in the planet. If you haven't got the energy, you can't solve the problem.

The third one on the list is food, which is going to be an increasing problem on our planet. We need agriculture and we need water. So if you solve the water problem, you've gone a long way to solving the food problem. In addition to food and water, you need fertilizers. You need energy for that. We need to have a structure where we harvest food and move it around. We need energy for that also. If you've got energy, you can hack this problem. If you don't have cheap, fast energy, I don't see how you can solve the problem.

Virtually every aspect of our fourth problem, the environment, has directly to do with either the way we generate energy, where we get it, how we store it, or what happens when we generate it. I don't know of any other single thing, if you care about the environment, that would have a bigger positive effect than to solve the energy problem. I don't know of anything else you could do for the environment that would be more effective.

Energy would have a tremendous impact if you could solve itmake it cheap, make it abundant, find a new oil. Miracles of science and technology in the physical sciences are primarily what enables this.

My third hypothesis is that no matter what you suggest as being items that deserve to be on this list of the top ten, if you take something other than energy and move it to the top, you will not find anywhere near the same cooperative, positive effect on the other ones as energy.

So you look at where the power is available, the true energy source that's available to generate terawatts. It turns out it's very simple. The big place where we can get the terawatts we need is in the place where there might as well be nothing right now. The technology that enables that has to happen a lot sooner than 2050, because of the huge size of the population. So this is what I call the terawatt challenge: to find a way of changing the energy source so that we can still be prosperous.

It's actually not clear that there is enough coal that's really efficiently, cheaply producible. It's interesting that when you look for terawatts, all the other answers are nuclear. Solar energy is a nuclear energy source, of course. Thus if you like nuclear and if you like nuclear fusion, you'll love the sun. Every day, even though vast amounts of the solar energy go someplace else, 165,000 terawatts hit the Earth. We need only 20 terawatts to completely solve the world's energy needs. This is a vast energy source. We just don't know how to get it cheaply yet.

4 PREV

0 0

Post a comment