Info

tip-induced modification 262 tip-sample interaction 113; 114; 115; 116;

117; 118; 119; 120 p-GaAs 257; 260 contact-mode 229 atomic layer epitaxy 268; 272 atomic resolution 102; 103 atomic terraces 187; 190; 194 atomic-scale 159; 160; 167 Au columnar-structured 64; 65; 66 electrocapillary curve 87; 96 electrodeposits 57; 64; 66; 67; 69 polycrystalline flame-annealed 80; 81; 82; 82; 83

surface oxidation 31 Au(100) CdSe 272; 268 "hex" - (lxl) transition 161 hexagonal reconstructed 161 Au(100)/HC104

PbUPD 21 Au(lll) 127; 128

in H2S04 + NaCl 103 Au(l 11)/HC104 AgUPD 17 PbUPD 20 Au(lll)/Se 273 average current 52 average surface morphology 80 azurin 28; 38 background noise 202 ballistic deposition model 59 bending beam method 89; 92 benztriazole 119; 120 biological adsorbates 27 bipotentiostat 28 bipotentiostatic control 14 Bi 88 adlattice 115; 116 UPD on Au(lll) 115 Bockris-Mattson model 28 bromophenyl 250 bulk deposition 33 bulk nucleation 33 c(2x2) superstructure 166 C15N" 291; 295; 299

CI5N-Pt black, NMR-spectrum 299 calibrations 254 cantilever 87; 90; 92 cantilever Si3N4 151 cantilever stress sensor fast dynamic response 97 Si3N4 254 capacity measurments 279 carbon 215; 216; 221; 223 catalyst particles 77; 83; 85 catalytic activity 54 CdS 106

CdSe on Au(l 00) 272

epitaxially on Au(100) 268 chain structures 150 charge transfer control 173 chemical etching 241 chloride adlayer 174 chloride ions adsorption 190 chlorine adlattice 177; 178; 180 chromate polishing 3 chromium carbide 201 Clavilier method 268 cluster true shape 54 cluster sizes 286 CN" - stretch vibration 277 dependance on experimental conditions 282 shift with potential 284 splitting 282; 286 CO adsorption 162 co-adsorbed sulphate open (3x3) arrangement 95 co-adsorption of anions 88; 97 compressive stress 88; 94; 95; 96 conducting polymers 2 conductivity 150 constant interaction 204 continuous shrinking 81

copper clusters 75; 81; 82; 83; 84; 85 copper clusters 81 copper oxidase lactase 28 correlation function 48; 49; 52 correlation times 50 corrosion 27; 58; 63; 66; 69; 101; 102 199; 213

adsorbate-catalyzed 268 corrosion resistance 185 coumarin

Au(100)-(hex) 107 Au(lll) 107 counter ions 153; 154

co-adsorbing 159; 163; 164; 167 Cr 185; 186; 187; 190; 191; 192; 193; 194; 195; 196 passivation 190 trivalent 190 Cr203 201

crevice corrosion 201 crystal growth 277 crystal miscut 247 Crystal Violet 139; 144 current average 46

dependence on time 46 correlation function 46; 50 fluctuation spectra 53 fluctuations 46 noise 46

noise spectral density 47 Cu deposition 259

deposition on polycrystalline Au 81 dissolution 82

electrodeposition, organic additives 30; 119 electrodissolution 30 gold alloy 34 island AFM image 261 on Au(lll) 116 selective deposition 262 CuPt(lll)

co-adsorbed sulfate anion 143 Cu surfaces 117; 119 Cu(100) substrate 182 Cu(110) addition of CI 117; 118; 119 inO.lMHCIO, 117 initial stages of oxidation 117; 118; 119 Cu(lll) 262

Cu underpotential deposition on Au(l 1 l)/sulfuric acid 142 on Pt(l 1 l)/sulfuric acid 143 Cu/Au(lll)

stress changes 88; 89 cuprous chloride complex 182 cyanide ions 278 cyclic voltammetry 33 cytochrom c on Au STM image 39

cytochrome c 28; 38 cytosine on Au(lll) 107 decoration steps 5; 6; 7 defect density 78

defects 185; 186; 188; 190; 192; 193; 195; 196 diazonium salts 249 diffusion anisotropic 52 isotropic 52; 53 diffusion, oxygen 53 length 182 diflusion-limited conditions 173 digital etching 138 dislocations 1; 2 disordered phase 163 disorder-order transition 163 dispersed catalyst 75 dissolution adsorbate-catalyzed 269 anisotropy 248 distance modulation spectroscopy 199; 204;

207; 208; 212 distance tunneling spectra 235 distance tunneling spectroscopy 14; 215 ; 218 DNA 107

domain boundaries 175 domains double rows 166 double-pulse method 278 dynamic line-scan 4 dynamic processes visualization 84 dynamic scaling theory 57; 60; 61; 62; 63; 66;

67; 68; 69 dynamical fluctuations 160 dynamics 241

local 46 Edwards-Wilkinson 62 effective barrier height 220; 221; 222 effective medium theory 88 elastic tunneling 46 electrocapillary 87; 92; 96 electrocapillary curves gold 89; 92; 93; 94 hysteresis 89; 92; 93; 94 platinum 89; 92; 93; 94 electrocapillary equation 89 electrocatalysis 54; 58 surface NMR studies 291

electrocatalysts 73; 74; 77 electrochemical atomic layer epitaxy 102; 106; 107

electrochemical force spectroscopy 125; 126; 132

electrochemical nanotechnology 73; 82 analytical 13 preparative aspects 13 electrochemical NMR cell 291; 292; 293; 294;

295; 297; 298; 300 electrochemical NMR probe 293; 296 electrochemical oxidation 78 electrochemical polishing 187 electrocompression 88; 138; 141 electrociystallization 27; 277 electrodeposition 160; 278 electrodissolution 57; 67; 68; 69 electron momentum 48 electron transfer 40 electron tunnel routes 40 electron tunneling homogeneous 37 interfacial 37 electron-adatom interaction 46 electronic devices 150 electroreduction of H202 116 epitaxial Ni film 164 epitaxy

NiO(433) // Ni(l 11) 185; 189; 190; 195 Ni0[0-11 ] // Ni[0-11 ] 185; 189; 190; 195 etch pits 246 etch rates 246 etching mechanism etching processes 253 EXAFS 88

borate buffer 186; 187 boron buffer 205 tunneling barrier height 205 Fe(CN)5[4-(aminomethyl)pyridine]~2 127

STM image on HOPG 128 Fe203 200 Fe-Cr 185; 186; 193 Fe-protoporphyrin DC 42 Fermi level control 14 first-order phase transformation 21 flame annealing 29 fluctuation-induced tunneling 37 Fourier spectrum four-probe technique 14 fractal dimension 61 Frank-van der Merwe 17; 32; 59 frizzy steps 53; 177 fuel-cell, applications of NMR 300 GaAs 253 native oxide 257 passivation 241 sulfide passivation 248 GaAs(100) 258 electrodeposition of Cu 259 tip-induced modification 262 GIXS 7 gold oxide 29 gold oxide layers 64 grain boundaries 2 grating structure 108 grazing-incidence X-ray diffraction 186 growth three-dimensional 57; 58; 59; 60; 61; 62; 63;

65; 66; 68; 69 two-dimensional 57; 58; 59; 60; 61; 62; 63;

65; 66; 68; 69 growth dynamics 180 growth models 57; 59 herringbone reconstruction 164 heteroepitaxial deposition 82 hexagonal contours 188 highly oriented pyrolytic graphite 144; 149 covalent immobilization 127 defects 78; 79; 82; 83 thermally oxidized 127; 128; 129; 130 steps 153 oxidation 78 homoepitaxial deposition 173 honeycomb structure 88 HSeCV 273 H-termination 245 hydroxide outer layer 190; 192 hysteresis 161; 163 image analysis 61 impedance measurements 53 inclusions 199; 201; 207 indirect tunneling processes 206; 211 induction period 81 inhomogeneous distribution 81 InSe(100) 253 in-situFTIR 245

in-situ monitoring of electrocrystallization 278 in-situ scanning 27

in-situ STM complementary use of LEED 138; 139; 141;

142; 143; 144; 146 large adsorbates 28 real time imaging 241 iodide 103; 104; 268

iodine adlayer 137; 138; 139; 140; 141; 142; 143; 144; 145; 146 adsorption of TMPyP 146 on Au(l 11) 137; 138; 139; 140; 142; 143;

0 0

Post a comment