References

[1] S. Archer, T.T. Li, A.T. Evans, S.T. Britland, and H. Morgan. Cell reactions to dielectrophoretic manipulation. Biochem. Biophys. Res. Commun., 257:687-698, 1999.

[2] A. Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. U.S.A., 94:4853-4860, 1997.

[3] A. Blake. Handbook of Mechanics, Materials, and Structures. Wiley, New York, pp. 710, 1985.

[4] R.H. Burdon. Heat-shock and the heat-shock proteins. Biochem. J., 240:313-324, 1986.

[5] S.W. Carper, J.J. Duffy, andE.W. Gerner. Heat-shock proteins in thermotolerance and other cellular processes. Cancer Res., 47:5249-5255, 1987.

[6] A. Castellanos, A. Ramos, A. Gonzalez, F. Morgan, and N. Green. AC Electric-Field-Induced Fluid Flow in Microelectrode Structures: Scaling Laws. Presented at Proceedings of 14th International Conference on Dielectric Liquids, Graz, Austria, 7-12 July 2002.

[7] W.A. Catterall. Structure and function of voltage-gated ion channels. Ann. Rev. Biochem., 64:493-531, 1995.

[8] D.E. Chang, S. Loire, and I. Mezic. Closed-form solutions in the electrical field analysis for dielectrophoretic and travelling wave inter-digitated electrode arrays. J. Phys. D: Appl. Phys., 36:3073-3078, 2003.

[9] C.F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T. Duke, and R.H. Austin. Elec-trodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J., 83:2170-2179, 2002.

[10] D.S. Clague and E.K. Wheeler. Dielectrophoretic manipulation of macromolecules: The electric field. Phys. Rev. E, 64:026605-8, 2001.

[11] E.A. Craig. The heat shock response. CRC Crit. Rev. Biochem., 18:239-280, 1985.

[12] A. Docoslis, N. Kalogerakis, and L.A. Behie. Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells. Cytotechnology, 30:133-142, 1999.

[13] M. Durr, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis, 24:722-731, 2003.

[14] S. Fiedler, S.G. Shirley, T. Schnelle, and G. Fuhr. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem., 70:1909-1915, 1998.

[15] G. Fuhr, W.M. Arnold, R. Hagedorn, T. Muller, W. Benecke, B. Wagner, and U. Zimmermann. Levitation, holding, and rotation of cells within traps made by high-frequency fields. Biochimi. Et Biophys. Acta, 1108:215-223, 1992a.

[16] G. Fuhr, H. Glasser, T. Muller, and T. Schnelle. Cell manipulation and cultivation under AC electric-field influence in highly conductive culture media. Biochimi. Et Biophys. Acta-Gen. Sub., 1201:353-360, 1994.

[17] G. Fuhr, R. Hagedorn, T. Muller, W. Benecke, and B.Wagner. Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J. Microelectromech. Sys., 1:141-146, 1992b.

[18] G. Fuhr, T. Schnelle, T. Muller, H. Hitzler, S. Monajembashi, and K.O. Greulich. Force measurements of optical tweezers in electro-optical cages. Appl. Phys. A-Mater. Sci. Process., 67:385-390, 1998.

[19] P. Ganatos, R. Pfeffer, and S. Weinbaum. A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech., 99:755-783, 1980.

[20] P.R.C. Gascoyne and J. Vykoukal. Particle separation by dielectrophoresis. Electrophoresis, 23:1973-1983, 2002.

[21] P.R.C. Gascoyne, X.-B. Wang, Y. Huang, and F.F. Becker. Dielectrophoretic separation of cancer cells from blood. IEEE Trans. Ind. Appl., 33:670-678, 1997.

[22] P.R.C. Gascoyne, H. Ying, R. Pethig, J. Vykoukal, and F.F. Becker. Dielectrophoretic separation of mammalian cells studied by computerized image analysis. Measure. Sci. Technol., 3:439-445, 1992.

[23] W.J. Gibbs. Conformal Transformations in Electrical Engineering. Chapman & Hall, London, pp. 219, 1958.

[24] H. Glasser and G. Fuhr. Cultivation of cells under strong ac-electric field - differentiation between heating and trans-membrane potential effects. Bioelectrochem. Bioenerget., 47:301-310, 1998.

[25] H. Glasser, T. Schnelle, T. Muller, and G. Fuhr. Electric field calibration in micro-electrode chambers by temperature measurements. Thermochimi. Acta, 333:183-190, 1999.

[26] A.J. Goldman, R.G. Cox, and H. Brenner. Slow viscous motion of a sphere parallel to a plane wall - II Couette flow. Chem. Eng. Sci., 22:653-660, 1967.

[27] D.S. Gray, J.L. Tan, J. Voldman, and C.S. Chen. Dielectrophoretic registration of living cells to a microelec-trode array. Biosens. Bioelectron., 19:1765-1774, 2004.

[28] N.G. Green, A. Ramos, and H. Morgan. Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J. Electrostat., 56:235-254, 2002.

[29] A.W. Griffith and J.M. Cooper. Single-cell measurements of human neutrophil activation using electrorota-tion. Anal. Chem., 70:2607-2612, 1998.

[30] A.J. Grodzinsky and M.L. Yarmush. Electrokinetic separations. In G. Stephanopoulus (ed.), Bioprocessing, Weinheim, Germany; New York, VCH, pp. 680-693, 1991.

[31] C. Grosse and H.P. Schwan. Cellular membrane potentials induced by alternating fields. Biophys. J., 63:16321642, 1992.

[32] L.F. Hartley, K. Kaler, and R. Paul. Quadrupole levitation of microscopic dielectric particles. J. Electrostat., 46:233-246, 1999.

[33] Z. He. Potential distribution within semiconductor detectors using coplanar electrodes. Nuclear Instruments & Methods in Physics Research, Section A (Accelerators, Spectrometers, Detectors and Associated Equipment) 365:572-575, 1995.

[34] Y. Huang, K.L. Ewalt, M. Tirado, T.R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O'Connell, and M. Krihak. Electric manipulation of bioparticles and macromolecules on microfabricated electrodes. Anal. Chem., 73:1549-1559, 2001.

[35] Y. Huang, R. Holzel, R. Pethig, and X.-B. Wang. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys. Med. Biol., 37:1499-1517, 1992.

[36] Y. Huang and R. Pethig. Electrode design for negative dielectrophoresis. Measure. Sci. Technol., 2:11421146, 1991.

[37] Y. Huang, X.-B. Wang, F.F. Becker, and P.R.C. Gascoyne. Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys. J., 73:1118-1129, 1997.

[38] M.P. Hughes. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis, 23:2569-2582, 2002.

[39] M.P. Hughes. Nanoelectromechanics in Engineering and Biology, CRC Press, Boca Raton, Fla., pp. 322, 2003.

[40] M.P. Hughes and H. Morgan. Dielectrophoretic trapping of single sub-micrometre scale bioparticles. J. Phys. D-Appl. Phys., 31:2205-2210, 1998.

[41] M.P. Hughes andH. Morgan. Measurement of bacterial flagellar thrust by negative dielectrophoresis. Biotech-nol. Prog., 15:245-249, 1999.

[42] M.P. Hughes, H. Morgan, F.J. Rixon, J.P. Burt, and R. Pethig. Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochim. Biophys. Acta, 1425:119-126, 1998.

[43] A. Irimajiri, T. Hanai, and A. Inouye. A dielectric theory of "multi-stratified shell" model with its application to a lymphoma cell. J. Theoret. Biol., 78:251-269, 1979.

[44] L.F. Jaffe and M.M. Poo. Neurites grow faster towards the cathode than the anode in a steady field. J. Exp. Zool., 209:115-128, 1979.

[45] T.B. Jones. Electromechanics of Particles. Cambridge University Press, Cambridge, pp. 265, 1995.

[46] T.B. Jones. Influence of scale on electrostatic forces and torques in AC particulate electrokinetics. IEEE Proc.-Nanobiotechnnol., 150:39-46, 2003.

[47] T.B. Jones and G.W. Bliss. Bubble dielectrophoresis. J. Appl. Phys., 48:1412-1417, 1977.

[48] T.B. Jones, G.A. Kallio, and C.O. Collins. Dielectrophoretic levitation of spheres and shells. J. Electrostat., 6:207-224, 1979.

[49] T.B. Jones and J.P. Kraybill. Active feedback-controlled dielectrophoretic levitation. J. Appl. Phys., 60:12471252, 1986.

[50] T.B. Jones and M. Washizu. Equilibria and dynamics of DEP-levitated particles: Multipolar theory. J. Elec-trostat, 33:199-212, 1994.

[51] T.B. Jones and M. Washizu.. Multipolar dielectrophoretic and electrorotation theory. J. Electrostat., 37:121134, 1996.

[52] D.R. Jung, R. Kapur, T. Adams, K.A. Giuliano, M. Mrksich, H.G. Craighead, and D.L. Taylor. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit. Rev. Biotechnol., 21:111-154, 2001.

[53] K.V.I.S. Kaler and T.B. Jones. Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys. J., 57:173-182, 1990.

[54] A. Lacy-Hulbert, J.C. Metcalfe, and R. Hesketh. Biological responses to electromagnetic fields. FASEB J., 12:395-420, 1998.

[55] S. Lindquist. The heat-shock response. Annu. Rev. Biochem., 55:1151-1191, 1986.

[56] N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri. A CMOS chip for individual cell manipulation and detection. IEEE J. Solid-State Circ., 38:2297-2305, 2003.

[57] G.H. Markx and C.L. Davey. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enzyme Microb. Technol., 25:161-171, 1999.

[58] G.H. Markx, R. Pethig, and J. Rousselet. The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation. J. Phys. D (Applied Physics), 30:2470-2477, 1997.

[59] G.H. Markx, M.S. Talary, and R. Pethig. Separation of viable and non-viable yeast using dielectrophoresis. J. Biotechnol., 32:29-37, 1994.

[60] H. Morgan and N.G. Green. AC Electrokinetics: Colloids and Nanoparticles. Research Studies Press, Baldock, Hertfordshire, England, 2003.

[61] H. Morgan, A.G. Izquierdo, D. Bakewell, N.G. Green, and A. Ramos. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: Analytical solution using Fourier series. J. Phys. D-Appl. Phys., 34:1553-1561, 2001.

[62] T. Muller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, andG. Fuhr. A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron., 14:247-256, 1999.

[63] M. Ozkan, T. Pisanic, J. Scheel, C. Barlow, S. Esener, and S.N. Bhatia. Electro-optical platform for the manipulation of live cells. Langmuir, 19:1532-1538, 2003.

[64] R. Pethig and D.B. Kell. The passive electrical-properties of biological-systems - their significance in physiology, biophysics and biotechnology. Phys. Med. Biol., 32:933-970, 1987.

[65] C. Polk and E. Postow. Handbook of Biological Effects of Electromagnetic Fields. CRC Press, Boca Raton, FL, pp. 618, 1996.

[66] L. Qian, M. Scott, K.V.I.S. Kaler, and R. Paul. Integrated planar concentric ring dielectrophoretic (DEP) levitator. J. Electrostat., 55:65-79, 2002.

[67] C. Reichle, T. Schnelle, T. Muller, T. Leya, and G. Fuhr. A new microsystem for automated electrorotation measurements using laser tweezers. Biochim. Et. Biophys. Acta-Bioenerg., 1459:218-229, 2000.

[68] T.A. Ryan, J. Myers, D. Holowka, B. Baird, and W.W. Webb. Molecular crowding on the cell surface. Science, 239:61-64, 1988.

[69] T. Schnelle, R. Hagedorn, G. Fuhr, S. Fiedler, and T. Muller. 3-Dimensional electric-field traps for manipulation of cells - calculation and experimental verification. Biochim. Et Biophys. Acta, 1157:127-140, 1993.

[70] T. Schnelle, T. Muller, and G. Fuhr. The influence of higher moments on particle behaviour in dielectrophoretic field cages. J. Electrostat., 46:13, 1999a.

[71] T. Schnelle, T. Muller, and G. Fuhr. Trapping in AC octode field cages. J. Electrostat., 50:17-29, 2000.

[72] T. Schnelle, T. Muller, G. Gradl, S.G. Shirley, and G. Fuhr. Paired microelectrode system: Dielectrophoretic particle sorting and force calibration. J. Electrostat., 47:121-132, 1999b.

[73] H.P. Schwan. Dielectrophoresis and rotation of cells. In E. Neumann, A.E. Sowers, and C.A. Jordan, (eds.) Electroporation and Electrofusion in Cell Biology. New York, Plenum Press, pp. 3-21, 1989.

[74] H.P. Schwan. Linear and nonlinear electrode polarization and biological materials. Ann. Biomed. Eng., 20:269-288, 1992.

[75] J.R. Subjeck and T.T. Shyy. Stress protein systems of mammalian-cells. Am. J. Physiol., 250:C1-C17, 1986.

[76] J. Suehiro, R. Hamada, D. Noutomi, M. Shutou, and M. Hara. Selective detection of viable bacteria using dielectrophoretic impedance measurement method. J. Electrostat., 57:157-168, 2003.

[77] J. Suehiro and R. Pethig. The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system. J. Phys. D-Appl. Phys., 31:3298-3305, 1998.

[78] K. Svoboda and S.M. Block. Biological applications of optical forces. Ann. Rev. Biophys. Biomol. Struc., 23:247-285, 1994.

[79] T. Y. Tsong. Molecular recognition and processing of periodic signals in cells study of activation of membrane ATPases by alternating electric fields. Biochim. et Biophys. Acta, 1113:53-70, 1992.

[80] S. Tsukahara, T. Sakamoto, and H. Watarai. Positive dielectrophoretic mobilities of single microparticles enhanced by the dynamic diffusion cloud of ions. Langmuir, 16:3866-3872, 2000.

[81] M. Urano and E.B. Douple. Thermal effects on cells and tissues. VSP, Utrecht, The Netherlands, pp. 80, 1988.

[82] P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M.O. De Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens. Actu. B-Chem., 49:73-80, 1998.

[83] J. Voldman, R.A. Braff, M. Toner, M.L. Gray, and M.A. Schmidt. Holding forces of single-particle dielec-trophoretic traps. Biophys. J., 80:531-541, 2001.

[84] J. Voldman, M. Toner, M.L. Gray, and M.A. Schmidt. A microfabrication-based dynamic array cytometer. Anal. Chem., 74:3984-3990, 2002.

[85] J. Voldman, M. Toner, M.L. Gray, and M.A. Schmidt. Design and analysis of extruded quadrupolar dielec-trophoretic traps. J. Electrostat. 57:69-90, 2003.

[86] X. Wang, X.-B. Wang, F.F. Becker, and P.R.C. Gascoyne. A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green's theorem. J. Phys. D (Applied Physics), 29:1649-1660, 1996.

[87] X. Wang, X.-B. Wang, and P.R.C. Gascoyne. General expressions for dielectrophoretic force and electroro-tational torque derived using the Maxwell stress tensor method. J. Electrostat., 39:277-295, 1997a.

[88] X.-B. Wang, Y. Huang, P.R.C. Gascoyne, and F.F. Becker. Dielectrophoretic manipulation of particles. IEEE Trans. Ind. Appl, 33:660-669, 1997b.

[89] X.-B. Wang, Y. Huang, X. Wang, F.F. Becker, and P.R.C. Gascoyne. Dielectrophoretic manipulation of cells with spiral electrodes. Biophys. J., 72:1887-1899, 1997c.

[90] X. J. Wang, J. Yang, and P.R.C. Gascoyne. Role of peroxide in AC electrical field exposure effects on Friend murine erythroleukemia cells during dielectrophoretic manipulations. Biochimi. Et Biophys. Acta-Gen. Sub., 1426:53-68, 1999.

[91] M. WashizuandT.B. Jones. Multipolar dielectrophoretic force calculation. J. Electrostat. ,33:187-198,1994.

[92] M. Washizu. and T. B. Jones. Generalized multipolar dielectrophoretic force and electrorotational torque calculation. J. Electrostat., 38:199-211, 1996.

[93] J.C. Weaver, T.E. Vaughan, and G.T. Martin. Biological effects due to weak electric and magnetic fields: The temperature variation threshold. Biophys. J., 76:3026-3030, 1999.

[94] J. Wu. Acoustical tweezers. J. Acoust. Soc. Am., 89:2140-2143, 1991.

[95] G. Zhou, M. Imamura, J. Suehiro, and M. Hara. A dielectrophoretic filter for separation and collection of fine particles suspended in liquid. Conference Record of the IEEE Industry Applications Conference, 2:1404-1411,2002.

[96] X.F. Zhou, J.P.H. Burt, and R. Pethig. Automatic cell electrorotation measurements: Studies of the biological effects of low-frequency magnetic fields and of heat shock. Phys. Med. Biol., 43:1075-1090, 1998.

[97] X.F. Zhou, G.H. Markx, and R. Pethig. Effect of biocide concentration on electrorotation spectra of yeast cells. Biochim. Et Biophys. Acta-Biomem., 1281:60-64, 1996.

[98] U. Zimmermann. Electrical Breakdown, Electropermeabilization and Electrofusion. Rev. Phys. Biochem. Pharma., 105:175-256, 1986.

0 0

Post a comment