References

1. Nanoroad SME. Nanomaterial roadmap 2015. Roadmap report concerning the use of nano-materials in the energy sector. http://www.nanoroad.net/index.php7topic = download.

2. Schell International. (2001) Energy needs, choices and possibilities. Scenarios to 2050. http:// www.shell.com/scenarios.

3. Winter M. and Brodd RJ. (2004) What are batteries, fuel cells and supercapacitors? Chem. Rev. 104:4245-4269.

4. Edwards JH, Badwal SPS, Duffy GJ, Lasich J, Ganakas G. (2002) The application of solidstate ionic technology for novel methods of energy generation and supply. Solid State Ionics 152-153:843-852.

5. Hong JI, Yeo IH, Paik WK. (2001) Conducting polymer with metal oxide for electrochemical capacitor - poly(3,4-ethylenedioxythiophene) RuO2 electrode. J. Electrochem. Soc. 148(2): A156-A163.

6. Conway BE . (1999) Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications. Kluwer Academia/Plenum , New York .

7. Huang LM, Wen T-C, Gopalan A. (2006) Electrochemical and spectroelectrochemical monitoring of supercapacitance and electrochromic properties of hydrous ruthenium oxide embedded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) composite . Electrochem. Acta 51:3469-3476.

8. Cuentas-Gallegos K, Lira-Cantú M, Casañ-Pastor P, Gómez-Romero P. (2005) Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 15:1125-1133.

9 . Prasad KR , Munichandraiah N . (2002) Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes. J. Power Sources 112(2):443-451. 10. Shukla AK, Sampath S, Vijayamohanan K. (2000) Electrochemical supercapacitors: Energy storage beyond batteries. Curr. Sci. 79(12):1656-1661. 11 . Baibarac M , Gómez-Romero P. (2005) Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J. Nanosci. Nanotechnol. 6(2):289-302.

12. Shirakawa H, Louis EJ, McDiarmid AG, Chaing CK, Heeger AJ. (1997) Synthesis of electrically conducting organic polymers: halogen derivatives of poly(acetylene), (CH)x. J. Chem. Soc. Commun. 16:578-579.

13. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB . (1990) Light-emitting diodes based on conjugated polymers . Nature 347 : 539 - 541 .

14 . Pron A . and Rannou P. (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27:135-190. 15. Gómez-Romero P. (2001) Hybrid organic-inorganic materials. In search for synergic activity. Adv. Mater. 13:163-174.

16 . Lira-Cantú M. and Gómez-Romero P. (1998) Electrochemical and chemical syntheses of the hybrid organic-inorganic electroactive material formed by phosphomolybdate and poly-aniline. Application as cation-insertion electrodes. Chem. Mater. 10:698-704.

17 . Zheng JP, Huang J , Jow TR . (1997) The limitations of energy density for electrochemical capacitors. J. Electrochem. Soc. 144:2026-2031. 18. Breeze AJ, Schlesinger Z, Carter SA, Brock PJ. (2001) Charge transport in TiO2/MEH-PPV polymer photovoltaics. Phys. Rev. B 64:125205.

19 . Hu CC. and Tsou TW. (2003) The optimization of specific capacitance of amorphous manga nese oxide for electrochemical supercapacitors using experimental strategies. J. Power Sources 115:179-182.

20 . Jiang J . and Kucernak A . (2002) Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization. Electrochim. Acta 47:2381-2386.

21. Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K. (2002) Amorphous V2O5/carbon composites as electrochemical supercapacitors electrodes. Solid State Ionics 152-15:833-841.

22. Wohlfahrt-Mehrens M, Schenk J, Wilde PM, Abdelmula E, Axmann P, Garche J. (2002) New materials for supercapacitors. J. Power Sources 105:182-188.

23. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR. (2003) Electrochemical capacitor ofmagnetite in aqueous electrolytes. J. Power Sources 113:173-178.

24 . Chen WC , Wen TC , Hsisheng T. (2003) Polyaniline-deposited porous carbon electrode for supercapacitors. Electrochim. Acta 48:641. 25. Mastragostino M, Arbizzani C, Soavi F. (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493-498.

26 . Park JH , Park OO . (2002) Hybrid electrochemical capacitors based on polyaniline and acti vated carbon electrodes. J. Power Sources 111:185-190.

27 . Ryu KS , Kim KM , Park NG , Park YJ , Chang SH . (2002) Synthesis and electrochemical properties of V2O5 intercalated with binary polymer. J. Power Sources 103:305.

28. Zhou Z, Cai N, Zhou Y. (2005) Capacitive characteristics of manganese oxides and poly-aniline composite thin film deposited on porous carbon. Mater. Chem. Phys. 94:371-375.

29. White AM and Slade RCT. (2003) Polymer electrodes doped with heteropolymetallates and their use within solid-state supercapacitors. Synth. Met. 139:123-131.

30 . Janssen RAJ , Hummelen JC , Sariciftci NS . (2005) Polymer-fullerene bulk heterojunction solar cells. MRS Bull. 30:33-36. 31. Takel T, Yoshimura K, Yonesaki Y, Kumada N, Kinomura N. (2005) Preparation of poly-aniline/mesoporous silica hybrid and its electrochemical properties. J. Porous Mater. 12(4):337-343.

32 . Machida K , Furuuchi K , Min M , Naoi K . (2004) Mixed proton-electron conducting nanocom-

posite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry 72(6):402-404.

33 . Girija TC , Sangaranarayanan MV. (2006) Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J. Power Sourc. 156:705-711.

34. Wang XF, Ruan DB, Wang DZ, Liang J. (2005) Hybrid electrochemical supercapacitors based on polyaniline and activated carbon electrodes. Acta Phys. Chim. Sin. 21(3):26-266.

35. Gómez-Romero P, Lira-Cantú M. (1997) Chemical polymerization of polyaniline and polypyrrole by phosphomolibdic acid. In situ formation of hybrid organic-inorganic materials. Solid State Ionics 101-103:875-880.

36. Pope MT, Müller A. (eds.). (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. In Topics in Molecular Organization and Engineering . Kluwer, Dordrecht .

37. Gómez-Romero P. and Casañ-Pastor N. (1996) Photoredox chemistry in oxide clusters. Photochromic and redox properties of polyoxometalates in connection with analog solid state colloidal systems. J. Phys. Chem. 100:12448.

38. Gómez-Romero P. and Lira-Cantú M. (1997) Hybrid organic-inorganic electrodes: The molecular material formed between polypyrrole and the phosphomolybdate anion. Adv. Mat. 9 : 144 .

39. Barbero C, Miras MC, Schnyder B, Haas O, Kotz R. (1994) Sulfonated polyaniline films as cation insertion electrodes for battery applications. Part 1 - Structural and electrochemical characterization. J. Mater. Chem. 4:1775-1783.

40. Novak P, Mueller K, Santhanam KSV, Haas O. (1997) Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97:207.

41. Oyama N, Tatsuma T, Sato T, Sotomura T. (1995) Dimercaptan-polyaniline composite electrodes for lithium batteries with high-energy density. Nature 373:6515.

42. Scrosati B. Electrochemical properties of conducting polymers. (1988) Progress in Solid State Chem. 18(1):1—77.

43 . Chen WC , Wen TC . (2003) Electrochemical and capacitive properties of polyaniline-im-planted porous carbon electrode for supercapacitors. J. Power Sources. 117(1-2):273-282.

44. Hashmi SA, Upadhyaya HM. (2002) Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics 152:883-889.

45. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH. (2002) Redox supercapacitor using poly-aniline doped with Li salt as electrode. Solid State Ionics 152:861-866.

46. Gómez-Romero P and Sanchez C. (2004) Functional hybrid materials. Wiley, Weinheim (ISBN 3-527-30484-3).

47. Kulesza PJ, Malik MA, Karwowska B, Miecznikowski K, Dzwolak W, Gursynska A, Grzybowsa IN. (1997) Electrochemical Capacitors, (FM Delnick, D Ingersoll, X Andrieu, K Naoi eds.). Electrochemical Society, Pennington, UK. PV 96-2; 89.

48. Torres-Gómez G, Lira-Cantú M, Gómez-Romero P. (1999). Molecular hybrid materials based on conducting organic polymers and electroactive/photoactive inorganic species. J. New Electrochem. Syst. 2:145.

49. Dai L. (1999) Advanced syntheses and microfabrication of conjugated polymers, C -containing polymers and carbon nanotubes for optoelectronic applications. Polym. Adv. Technol. 10(7) :3 57-420.

50 . Baibarac M , Mihut L , Preda N , Lefrant S . (2005) Surface-enhanced Raman scattering studies on C-60 fullerene self-assemblies. Carbon 43(1): 1-9.

51. Baibarac M, Baltog I, Godon C, Lefrant S, Chauvet O. (2004) Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42(15):3143-3152.

52. Li C, Liu CL, Li FS, Gong QH. (2003) Optical limiting performance of two soluble multi-walled carbon nanotubes. Chem. Phys. Lett. 380(1-2):201-205.

53. Wu W, Li J, Liu L, Yanga L, Guo ZX, Dai L, Zhu D. (2002) The photoconductivity of PVK-carbon nanotube blends. Chem. Phys. Lett. 364(1-2): 196-199.

54. Wang W, Lin Y, Sun YP. (2005) Poly(W-vinyl carbazole)-functionalized single-walled carbon nanotubes: Synthesis, characterization, and nanocomposite thin films. Polymer 46 (20) : 8634 - 8640 .

55 . Hirsch A . (2002) Functionalization of single-walled carbon nanotubes . Ang. Chemie. Intl. Ed.

41(11):1853-1859.

56 . Coakley KM , Liu Y, Goh C , McGehee MD . (2005) Ordered organic-inorganic bulk hetero-

junction photovoltaic cells . MRS Bull 30 : 37 - 40 .

57 . Halls JJM , Walsh CA , Greenham NC , Marseglia E , Friend RH , Moratti SC , Holmes AB .

(1995) Efficient photodiodes from interpenetrating polymer networks . Nature 376 (6540) : 498 - 500 .

58. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. (1995) Polymer photovoltaic cells - enhanced efficiencies via network of internal donor-acceptor heterojunctions. Science 270:1789.

59 . Spanggaard H , Krebs FK . (2004) A brief history of the development of organic and polymeric photovoltaics. Sol. Energ. Mater. Sol. Cell 83:125-146.

60 . Sariciftci NS , Braun D , Zhang C , Srdanov VI , Heeger AJ , Stucky G , Wudl F. (1993)

Semiconducting polymer-buckminsterfullerene heterojunctions - diodes, photodiodes, and photovoltaic cells . Appl. Phys. Lett. 62 : 585 - 587 . 61. Hoppe H and Sariciftci NS. (2006) Organic solar cells: An overview. J. Mater. Res. 19(7): 1924-1945.

62 . Lira-Cantú M . and Gómez-Romero P. (2004) Multifunctional hybrid materials based on conducting organic polymers. Nanocomposite systems with photo-electro-ionic properties and applications . In Functional Hybrid Materials ( Gómez-Romero P and Sanchez C eds.) . Wiley, Weinheim , pp. 210 .

63. Singh TB. and Sariciftci NS. (2006) Progress in plastic electronics devices. Ann. Rev. Res. 36:199-230.

64 . Huynh WU , Dittmer JJ , Alivisatos AP. (2002) Hybrid nanorods-polymer solar cells. Science 295(5564):2425-2427.

65. Günes S, Neugebauer H, Sariciftci NS, Roither H, Kovalenko M, Pillwein G, Heiss W. (2006) Hybrid solar cells using HgTe nanocrystals and nanoporous TiO2 electrodes . Adv. Funct. Mater. 16(8):1095-1099.

66. Cui DH, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M. (2006) Harvest oflinear infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88(18): 183111.

67. McDonald SA, Konstantatos G, Zhang SG, Cyr PW, Klem EJD, Levina L, Sargent EH. (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics . Nat. Mater. 4(2): 138-142.

68 . Ackermann J , Videlot C , El Kassimi A , Guglielmetti R , Fages F. (2005) Highly efficient hybrid solar cells based on an Octithiophene-GaAs heterojunction. Adv. Funct. Mater. 15(5):810-817.

69. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec J. (2006) Design rules for donors in bulk-heterojunction solar cells- Towards 10% energy-conversion efficiency. Adv. Mater. 18:789-794. 70 . Coakley KM , McGehee MD . (2003) Photovoltaic cells made from conjugated polymers infiltratred into mesoporous titania. Appl. Phys. Lett. 83(16):3380-3382 71. Coakley KM, Liu Y, McGehee MD, Frindell KL, Stucky GD. (2003) Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv. Funct. Mater. 13(4):301-306 72 . Coakley KM , Srinivasan BS , Ziebarth JM , Goh C , Liu Y, McGehee MD . (2005) Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores . Adv. Funct. Mater. 15:1927-1932.

73. Kwong CY, Choy WCH, Djurisic AB, Chui PC, Cheng KW, Chan WK. (2004) Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications. NanotechnoZ. 15(9): 1156-1161.

74. Liu YX, Summers MA, Edder C, Frechet JMJ, McGehee MD. (2005) Using resonance energy transfer to improve exciton harvesting in organic-inorganic hybrid photovoltaic cells. Adv. Mater. 17(24):2960-2965.

75 . Slooff LH , Wienk MM , Kroon JM . (2004) Hybrid TiO2: polymer photovoltaic cells made from a titanium oxide precursor. Thin Solid Films 451:634-638.

76 . Huisman CL , Goossens A , Schoonman J . (2003) Preparation of a nanostructured composite of titanium dioxide and polythiophene: a new route towards 3D heterojunction solar cells. Synth. Met. 138:237-241.

77. Grant CD, Schwartzberg AM, Smedtad GP, Kowalik J, Tolbert LM, Zhang JZ. (2002) Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2'-bithiophene) as a sensitizer and hole conductor. J. Electroanal. Chem. 522:40-48.

78. Grant CD, Schwartzberg AM, Smestad GP, Kowalik J, Tolbert LM, Zhang JZ. (2003) Optical and electrochemical characterization of poly(3-undecyl-2,2'-bithiophene) in thin film solid state TiO2 photovoltaic solar cells. Synth. Met. 132:197-204.

79 . Ravirajan2 P, Haque SA , Poplavskyy D , Durrant JR , Bradley DDC , Nelson J . (2004)

Nanoporous TiO2 solar cells sensitized with a fluorine-thiophene copolymer. Thin Solid Films 451-452:624-629.

80 . van Hal PA, Wienk MM , Kroon JM , Verhees WJH , Slooff LH , van Gennip WJH , Jonkheijm

P, Janssen RAJ . (2003) Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction. Adv. Mater. 15(2):118-120

81. van Hal PA, Christiaans MPT, Wienk MM, Kroon JM, Janssen RAJ. (1999) Photoinduced electron transfer from conjugated polymers to TiO2. J. Phys. Chem. B 103(21):4352-4359.

82. Slooff LH, Kroon JM, Loos J, Koetse MM, Sweelssen J. (2005) Influence of the relative humidity on the performance of polymer/TiO2 photovoltaic cells. Adv. Funct. Mater. 15 (4) : 689 - 694 . 2

83 . Wang H , Oey CC , Djurisic AB , Xie MH , Leung YH . (2005) Titania bicontinuous network structures for solar cell applications. Appl. Phys. Lett. 87:023507.

84 . Ravirajan P, Bradley DDC , Nelson J , Haque SA , Durrant JR , Smit HJP, Kroon JM . (2005)

Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene) polystyrene sulphonate as hole collector. Appl. Phys. Lett. 86(14): 143101

85. Ravirajan P, Haque SA, Durrant JR, Bradley DDC, Nelson J (2005). The effect of polymer photoelectronic properties on the performance of multilayer hybrid polymer/TiO2 solar cells. Adv. Funct. Mater. 15(4):609-618.

86. Arango AC, Johnson LR, Bliznyuk VN, Schlesinger Z, Carter SA, Horhold HH. (2000) Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion. Adv. Mater. 12:1689.

87. Liu Z, Zhou J, Xue H, Shen L, Zang H, Chen W. (2006) Polyaniline/TiO2 solar cells. Synth. Met. 156:721-723.

88. Song MY, Kim KJ, Kim DY. (2005) Enhancement of photovoltaic characteristics using PEDOT interlayer in TiO2/MEHPPV heterojunction devices. Sol. Energ. Mater. Sol. Cells 85 : 31 - 39 . 2

89. Fan Q, McQuillin B, Bradley DDC, Whitelegg S, Seddon AB. (2001) A solid state solar cell using sol-gel processed material and a polymer. Chem. Phys. Lett. 347:325-330.

90. Beek WJE, Wienk MM, Janssen RAJ. (2004) Efficient hybrid solar cells from zinc oxide nanoparticles and conjugated polymers. Adv. Mater. 16:1009-1013.

91. Beek WJE, Wienk MM, Kemerink M, Yang XN, Janssen RAJ. (2005) Hybrid zinc oxide conjugated polymer bulk heterojunction solar cell. J. Phys. Chem. B 109:9505-9516

92. Beek WJE, Wienk MM, Janssen RAJ. (2005) Hybrid polymer solar cells based on zinc oxide. J. Mater. Chem. 15:2985-2988

93. Beek WJE, Slooff LH, Wienk MM, Kroon JIM, Janssen RAJ (2005). Hybrid solar cells using a zinc oxide precursor and a conjugated polymer. Adv. Funct. Mater. 15:1703-1707.

94. Beek WJE, Wienk MM, Janssen RAJ. (2006) Hybrid solar cells from regioregular polythi-ophene and ZnO nanoparticles. Adv. Funct. Mater. 16:112-1116.

95. Olson DC, Piris J, Collins RT, Shaheen SE, Ginley DS. (2006) Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496(1):26-29.

96. Peiro AM, Ravirajan P, Govender K, Boyle DS, O'Brien P, Bradley DDC, Nelson J, Durrant JR. (2006) Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J. Mater. Chem. 16(21):2088-2096.

97 . Ravirajan P, Peiro AM , Nazeeruddin MK , Graetzel M , Bradley DDC , Durrant JR , Nelson J . (2006) Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nano-rods and amphiphillic molecular interface layer. J. Phys. Chem. B 110(15):7635-7639.

98. Lira-Cantu M, Norrman K, Andreasen JW, Krebs FC. (2006) Oxygen release and exchange in niobium oxide MEH-PPV hybrid solar cells. Chem. Mater. 18:5684-5690.

99. Mozer AJ, Wada Y, Jiang KJ, Masaki N, Yanagida S, Mori SN. (2006) Efficient dye-sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and conjugated polymer hole conductor. Appl. Phys. Lett. 89 : 043509 .

100. Greenham NC, Peng XG, Alivisatos AP. (1996) Charge separation and transport in conju-gated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54(24): 17628-17637.

101. Murakoshi K, Kogure R, Wada Y, Yanagida S. (1998) Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole. Sol. Energ. Mater. Sol. Cell 55(1-2): 113-125.

102. Arici E, Sariciftci NS, Meissner D. (2003) Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater. 13(2): 165-171.

103. Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS. (2004) Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Appl. Phys. A Mat. Sci. Proc. 79(1):59-64.

104. Bereznev S, Konovalov I, Opik A, Kois J. (2005) Hybrid CuInS2/polymer and CuInS2/ poly(3,4-ethylenedioxythiophene) photovoltaic structures. Synth. Met. 152(1-3):81-84.

105. Jayadevan KP, Tseng TY. (2005) One-dimensional semiconductor nanostructures as absorber layers in solar cells. J. Nanosci. Nanotech. 5(11): 1768-1784.

106. Gao LL, Tong B, Yao GJ, Dong YP, Zhang MF, Lam J, Yip W, Tang BZ. (2005) In situ complexes of self-assembled films of conjugated polymers with PbS nanoparticles and their photovoltaic properties. Acta Polym. Sin. 3:313-316.

107. Watt AAR, Meredith P, Riches JD, Atkinson S, Rubinsztein-Dunlop H. (2004) A PbS quantum-cube: conducting polymer composite for photovoltaic applications . Curr. Appl. Phys. 4(2-4):320-322.

108. Watt AAR, Blake D, Warner JH, Thomsen EA, Tavenner EL, Rubinsztein-Dunlop H, Meredith P. (2005) Lead sulfide nanocrystal: conducting polymer solar cells. J. Phys. D Appl. Phys. 38(12):2006-2012.

109. Zhang S, Cyr PW, McDonald SA, Konstantatos G, Sargent EH. (2005) Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconductor polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. App. Phys. Lett. 87(23):233101.

110. Ackermann J, Videlot C, El Kassimi A. (2002) Growth of organic semiconductors for hybrid solar cell application. Thin Solid Films 403-404:157-161.

111. Hu CC and Chu CH. (2000) Electrochemical and textural characterization of Iridium-doped polyaniline films for electrochemical capacitors. Mater. Chem. Phys. 65:329-338.

112. Milliron D, Gur I, Alivisatos AP. (2005) Hybrid organic-nanocrystal solar cells. MRS Bull. 30:41-44.

113. Milliron DJ, Hughes SM, Cui Y, Manna L, Li JB, Wang LW, Alivisatos AP. (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996): 190-195.

114. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP. (2003) Controlled growth of tetrapod-branched inorganic nanocrystals . Nat. Mater. 12 : 382 - 385 .

115 . Maria A , Cyr P, Klem E , Levina L , Sargen H . (2005) Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency. Appl. Phys. Lett. 87:213112.

116. Kroeze JE, Savenije TJ, Vermeulen MJW, Warman JM. (2003) Contactless determination of the conductivity action spectrum, exciton diffusion length, and charge separation efficiency in polythiophene-sensitized TiO2 bilayers. J. Phys. Chem. B 107(31):7696-7705.

117. Kwong CY, Djurisic AB, Chui PC, Cheng KW, Chan WK. (2004) Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells. Chem. Phys. Lett. 384(4-6):372-375.

118. Lira-Cantü M, Krebs FC. (2005) Polymer Photo voltaics: From Conjugated Polymers to Hybrid Organic-Inorganic Solar Cells. In Recent Research Developments in Applied Physics Vol. 8 (S.G. Pandalai eds.). Transworld Research Network (ISBN:81-7895-187-8).

119. Lira-Cantü M and Krebs FC. (2006) Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-TiO2): Performance improvement during long time irradiation. Sol. Energ. Mater. Sol. Cells 90:2076-2086.

120. Lira-Cantü M, Norrman K, Andreasen JW, Casan-Pastor N, Krebs FC. (2007) Detrimental effect of inert atmospheres on hybrid solar cells based on semiconductor oxides. J. Electrochem. Soc. 154(6):B508-B513.

121 . Kroeze JE , Savenije TJ . (2004) The application of a low-bandgap conjugated oligomer for the sensitization of SnO2 and TiO2. Thin Solid Films 451-45:54-59.

122. Moser J-E. (2005) Solar Cells. Later rather than sooner. Nat. Mater. 4:723-724.

123. Snaith HJ, Zakeeruddin SM, Schmidt-Mende L, Klein C, Graetzel M. (2005) Ion-coordinating sensitizer in solid-state hybrid solar cells. Angew. Chem. Int. Ed. 44:6413-6417.

124. Xiao-e L, Green ANM, Haque SA, Mills A, Durtant JR. (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J. Photochem. Photobio. A Chem. 162(2-3):253-259.

125 . Cao F, Oskam G , Searson PC . (1995) A solid state, dye sensitized photoelectrochemical cell . J. Phys. Chem. 99:17071-17073.

126. Li B, Wang L, Kang B, Wang P, Qiu Y. (2006) Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energ. Mater. Sol. Cells 90:549-573.

127. Durrant JR, Haque SA. (2003) Solar cells. A solid compromise. Nat. Mater. 2:362-363.

128 . Yanagida S . (2006) Recent research progress of dye-sensitized solar cells in Japan . C.R. Chimie 9:597-604.

129. Graetzel M. (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobio. A Chem. 164(1-3):3-14.

130. Guo L, Dai SY, Wang KJ, Fang XQ, Shi CW, Pan X. (2005) Dye-sensitized Nano-TiO2 thin membrane solar cells based on (PVDF-HFP)-type gel electrolytes. Chem. J. Chin. Univ. Chin. 26(10): 1934-1937.

131. Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S. (2003) Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J. Phys. Chem. B 107(18):4374-4381.

132. Mohmeyer N, Wang P, Schmidt HW, Zakeeruddin SM, Graetzel M. (2004) Quasi-solid-state dye sensitized solar cells with 1,3: 2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators. J. Mater. Chem. 14(12): 1905-1909.

133. Stangar UL, Orel B, Neumann B, Stathatos E, Lianos P. (2003) A sol-gel type of electrolyte for a dye-sensitized solar cell: Attenuated total reflectance (ATR) vibrational spectra studies. J. Sol Gel Sci. Tech. 26(1-3): 1113-1118.

134 . Stathatos E , Lianos P. (2002) Organic-inorganic nanocomposite gels employed as electrolyte supports in dye-sensitized photoelectrochemical cells. Int. J. Photoenerg. 4(1): 11-16.

135. Stathatos E, Lianos P, Vuk AS, OrelB. (2004) Optimization of a quasi-solid-state dye-sensitized photoelectrochemical solar cell employing a ureasil/sulfolane gel electrolyte. Adv. Funct. Mater. 14(1):45-48.

136 . Stathatos E , Lianos R , Zakeeruddin SM , Liska P, Graetzel M . (2003) A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid. Chem. Mater. 15(9):1825-1829.

137. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Graetzel M. (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2(6):402-407.

138. Kato T, Okazaki A, Hayase S. (2006) Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells - The comparison of nano-particle cross-linkers with polymer cross-linkers. J. Photochem. Photobio. A Chem. 179(1-2):42-48.

139. Kawano R, Tokuda H, Katakabe T, Nakamoto H, Kokubo H, Imabayashi S, Watanabe M. (2006) Specific charge transport in ionic liquids and ion gels and the importance in material science. Kob. Ronbu. 63(1):31-40.

140. Matsui H, Okada K, Kawashima T, Ezure T, Tanabe N, Kawano R, Watanabe M. (2004) Application of an ionic liquid-based electrolyte to a 100 mm x 100 mm sized dye-sensitized solar cell. J. Photochem. Photobio. A Chem. 164(1-3): 129-135.

141. Oda T, Tanaka S, Hayase S. (2006) Analysis of dominant factors for increasing the efficiencies of dye-sensitized solar cells: Comparison between acetonitrile and ionic liquid based electrolytes. Jpn. J. Appl. Phys. Part I. 45(4A):2780-2787.

142. Ogomi Y, Kato T, Hayase S. (2006) Dye sensitized solar cells consisting of ionic liquid and solidification. J. Photopoly. Sci. Technol. 19(3):403-408.

143. Wang L, Fang SB, Lin Y, Zhou XW, Li MY. (2005) A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors. Chem. Commun. 45:5687-5689.

144. Yamanaka N, Kawano R, Kubo W, Kitamura T, Wada Y, Watanabe M, Yanagida S. (2005) Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chem. Commun. 6 : 740 - 742 .

145. Saito Y, Azechi T, Kitamura T, Hasegawa Y, Wada Y, Yanagida S. (2004) Photo-sensitizing ruthenium complex for solid state dye sensitized solar cells in combination with conducting polymers as hole conductors. Coord. Chem. Rev. 248:1469-1478.

146. Haque SA, Handa S, Peter K, Palomares E, Thelakkat M, Durrant JR. (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. Angew. Chem. Int. Ed. 44:5740-5744.

147. Nogueira AF, Longo C, De Paoli M.A. (2004) Polymers in dye sensitized solar cells: Overview and perspectives. Coord. Chem. Rev. 248:1455-1468.

148. Tan XS, Zhai J, Wan MX, Jaing L, Zhu DB. (2003) Polyaniline as a hole transport material to prepare solid solar cells. Synth. Met. 137:1511-1512.

149. Senadeera GKR, Kitamura T, Wada Y, Yanagida S. (2004) Deposition of polyaniline via molecular self-assembly on TiO2 and its use as a sensitizer in solid-state solar cells. J. Photochem. Photobio. A Chem. 164(1-3):61-66.

150. Tan S, Zhai J, Xue B, Wan M, Meng Q, Li Y, Jiang L, Zhu D. (2004) Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir 20:2934-2937.

151. Tan SX, Zhai J, Wan MX, Meng OB, Li YL, Jiang L, Zhu DB. (2004) Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. J. Phys. Chem. B 108(48):18693-18697.

152. Murakoshi K, Kogure R, Wada Y, Yanagida S. (1997) Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett. 5:471-472.

153. Kitamura T, Maitani M, Matsuda M, Wada Y, Yanagida S. (2001) Improved solid-state dye solar cells with polypyrrole using carbon-based counter electrode. Chem. Lett. 10:1054-1055.

154. Lancelle-Beltran E, Prene P, Boscher C, Belleville P, Buvat P, Sanchez C. (2006) All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy conversion efficiency. Adv. Mater. 18:2579-2582.

155. Spiekermann S, Smestad G, Kowalik J, Tolbert LM, Graetzel M. (2001) Poly(4-undecyl-2,2-bithiophene) as hole conductor in solid state dye sensitized titanium dioxide solar cells. Synt. Met. 121:1603-1604.

156. Saito Y, Kitamura T, Wada Y, Yanagida S. (2002) Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells. Synth. Met. 131(1-3): 185-187.

157. Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S. (2004) Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochem. Commun. 6:71-74.

158. Saito R, Dresselhaus G, Dresselhaus MS. (1998) Physical Properties of Carbon Nanotubes. Imperial college press, London.

159. Saito Y, Uemura S, Hamaguchi K. (1998) Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 37(3B):L346-L348.

160. Lira-Cantu M, Krebs FC, Gomez-Romero P, Yanagida S. (2008) Conjugated polymers as part of multifunctional organic-inorganic hybrid materials for photovoltaic applications. Mater. Res. Soc. Symp. Proc. 1007:249-257.

161. Wang Y, Yang K, Kim S-C, Nagarajan R, Samuelson LA, Kumar J. (2006) In situ polymerized carboxylated diacetylene as a hole conductor in solid-state dye-sensitized solar cell. Chem. Mat. 18:4215-4217.

162. Ikeda N, Miyasaka T. (2005) A solid-state dye-sensitized photovoltaic cell with poly(N-vinyl-carbazole) hole transporter mediated by alkali iodide. Chem. Comm. 1886-1888.

163. Ikeda N, Teshima K, Miyasaka T. (2006) Conductive polymer-carbon-imidazDlium composite: a simple means for constructing solid-state dye-sensitized solar cells. Chem. Comm. 1733-1735.

164. Kruger J, Plass R, Graetzel M, Matthieu HJ. (2002) Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4'-dicarboxy-2,2' bipyridine)-bis(isothiocyanato) ruthenium(II). Appl. Phys. Lett. 81(2):367-369.

165. Lancelle-Beltran E, Prene P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F, Boissiere C, Grosso D, Sanchez C. (2007) Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films. Chem. Mater. 18(26):6152-6156.

166. Brabec CJ, Hauch JA, Schilinsky P, Waldauf C. (2005) Production aspects of organic pho-tovoltaics and their impact on the commercialization of devices. MRS Bull. 30:50-52.

167. Padinger F, Brabec CJ, Fromherz T, Hummelen JC, Sariciftci NS. (2000) Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique. Opt. Elect. Rev. 8(4):280-283.

168. Winther-Jansen B, Krebs FC. (2006) High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition. Sol. Energ. Mat. Sol. Cells 90:123-132.

169. Krebs F. Alternative PV. (2005) Alternative PV Large scale organic photovoltaics. Refocus 6 (3): 38 - 39 .

170. Al-Ibrahim M, Roth HK, Zhokhavets U, Gobsch G, Sensfuss S. (2005) Flexible large-area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol. Energ. Mater. Sol. Cells 85:13-20.

171. Al-Ibrahim M, Klaus H, Sensfuss S. (2004) Efficient large-area polymer solar cells on flexible substrates. Appl. Phys. Lett. 85(9): 1481-1483.

172. Krebs FC, Alstrup J, Spanggaard H, Larsen K, Kold E. (2004) Production oflarge-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterphthalate. Sol. Energ. Mater. Sol. Cell 83:293-300.

173. http://www.konarkatech.com/

174. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4 : 864 - 868 .

175. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha CS, Ree M. (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells . Nat. Mater. 5:1897-203.

176. Österbacka R, An CP, Jiang XM, Vardeny ZV (2000) Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 4:839-842.

177 . Sirringhaus H , Brown PJ , Friend RH , Nielsen MM , Bechgaard K , Langeveid-Voss BMW,

Spiering AJH , Janssen RAJ , Meijer EW, Herwig P, de Leeuws DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685-688.

178 . Gebeyehu D, Brabec CJ, Sariciftci NS, Vangeneugden D, Kiebooms R, Vanderzande D,

Kienberger F, Schindler H . (2002) Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synth. Met. 125:279-287

179 . Gebeyehu D , Brabec CJ , Sariciftci NS . (2002) Solid-state organic-inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes. Thin Solid Films 403-404:271-274.

180. Baibarac M, Lira-Cantú M, Oró Solé J, Casañ-Pastor N, Gómez -Romero P. (2006) Electrochemically functionalized carbon nanotubes and their application to rechargeable Li batteries. Small 2(8-9): 1075-1082.

181. Dell RM, Rand DAJ. (2001) Energy storage - a key technology for global energy sustain-ability. J. Power Sources 100(1):2-17.

182. Fukuri N, Saito Y, Kubo W, Senadeera GKR, Kitamura T, Wada Y, Yanagida S. (2004) Performance improvement of solid-state dye-sensitized solar cells fabricated using poly(3,4-ethylenedioxythiophene) and amphiphilic sensitizing dye. J. Electrochem. Soc. 151(10):A1745-A1748.

183. Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Spiekermann S, Valchopoulos N, Kienberger F, Schindler H, Sariciftci NS. (2001) Solid state dye-sensitized TiO2 solar cells with poly(3-octylthiophene) as hole transport layer. Synth. Met. 121:1549-1550.

184. Gómez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casañ-Pastor N , Lira-Cantú M . (2003) Hybrid organic-inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem. Commun. 5:149.

185. Arango AC, Carter SA, Brock PJ. (1999) Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Appl. Phys. Lett. 74:1698-1700.

186. Kim H, Popov BN. (2003) Study and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc. 150:D56-D62.

Was this article helpful?

0 0

Post a comment