Toward Molecular Consciousness

How is electrical wave energy coupled to neuronal structure, and what neuronal structures are most suitable for coupling and representation of cognitive content? Simultaneous recognition (and cooperative coupling) by large numbers of neural elements requires rapid changes in chemical state of widely distributed macromolecules. Likely candidates are the "allosteric" proteins which can transduce regulatory signals (binding of molecules, ions/acidity, voltage fields etc.) to undergo functional conformational changes. Hyden (1977) initially proposed that proteins rapidly change their conformation in response to weak, oscillating electric fields. W. Ross Adey (1977) has elaborated on the coupling of neural protein conformation and function to EEG waves. He has suggested that webs of hydrated glycoproteins (extending from neural membranes into the extracellular space), membrane proteins, and the cytoskeleton are primed to undergo rapid conformational changes in response to localized and selective spatiotemporal EEG patterns, as well as biochemical signals. Transduction of electromagnetic energy into conformational states by widely distributed proteins can cooperatively represent dynamic information.

The common thread of biological intelligence, the "grain of the engram," may be found within cooperative dynamics of a molecular network whose structure and functions appear perfectly adapted to information processing: the cytoskeleton. response to weak, oscillating electric fields. W. Ross Adey (1977) has elaborated on the coupling of neural protein conformation and function to EEG waves. He has suggested that webs of hydrated glycoproteins (extending from neural membranes into the extracellular space), membrane proteins, and the cytoskeleton are primed to undergo rapid conformational changes in response to localized and selective spatiotemporal EEG patterns, as well as biochemical signals. Transduction of electromagnetic energy into conformational states by widely distributed proteins can cooperatively represent dynamic information.

The common thread of biological intelligence, the "grain of the engram," may be found within cooperative dynamics of a molecular network whose structure and functions appear perfectly adapted to information processing: the cytoskeleton.

0 0

Post a comment