Environmental degradation or sustainability

Identifying with 'nature' is a millennial challenge for the human race. To put it somewhat metaphysically, we are not only in nature but of nature, and nature is not only in us but of us. You might also say that since the nuclear age opened, nature has shown that the more we try to control it the more it boomerangs back at us. It is time to work on nature's own terms. Sustainability is a socioeconomic state in which the human demands placed upon the environment are met without reducing the capacity of the environment to provide for future generations (Dalal-Clayton and Bass, 2002). Will nanotechnology continue to develop on the premise of manipulating 'nature' to serve our illusions of perpetual comfort? Or will the surprising and unpredictable nature of nanoscience teach us the caution and sense of limits required in intervening in the very conditions of our own existence, and lend itself to a new understanding and accommodation?

Currently little impact is being made on reducing global warming, as emissions of the principal greenhouse gas CO2 continue to rise. The Intergovernmental Panel on Climate Change (IPCC) has projected an average global temperature change of 1.4-5.8 degrees Celsius by the end of this century. It may be higher, even much higher. Ice shelves and glaciers are now melting, major storms and floods are increasing, and sea levels are rising. About 42 per cent of carbon emissions are from electricity generation, 24 per cent from transportation, 20 per cent from industrial processes and 14 per cent from residential and commercial activities (Brown et al, 2003, pp59-68, 114).

Human and livestock pressure on the land has created worsening desertification in China, land of 1.3 billion people, and soil erosion is reducing arable land and affecting water supplies in many other areas of the world. About one third of the world's population lives in nations experiencing water shortages, and the proportion is rising. The recent intensive and comprehensive Millennium Ecosystem Assessment concludes that about 60 per cent of the planet's 'ecosystem services' are being degraded or used unsustainably. It catalogues a destabilizing loss of fish-stocks, forests, mangroves, coral reefs, natural water cycles and so on (Graham-Rowe and Holmes, 2005). The general question for us is whether nanotechnology will worsen or help slow down and reverse this situation, and the realistic answer is probably both at the same time, in different ways.

On the negative side, nanotechnology will cumulatively be appropriated by the existing forces of consumer production, advertising and marketing. Unless there is coordinated scrutiny and regulation, nanotechnologies may be introduced with the old mistake of ignoring or neglecting any potential external costs they may have. They may also be promoted as high technological alternatives to nature's services in cases where the latter are actually cheaper when all externalities are taken into account. Thus, hypothetically, a nanotechnology-based system for water-purification may be promoted as a hi-tech (and profitable) solution when in fact better overall use of existing water resources (for example water-shed adjustment) may be less expensive when one puts into the cost-benefit pricing the energy requirements, potential health effects, and so on of the hi-tech solution. In other words, generally speaking, nano-technologies are only likely in most cases to be a human welfare benefit if the traditional social and economic assumptions are challenged. Grafted uncritically onto old ways of thinking and doing things they may simply intensify, through greater input-output efficiency, the sustainability problems we have already.

On the positive side, the cleaner energy technologies of wind and solar power are now taking off, and well-directed nanotechnology research and development programmes could speed up the transfer to such energy technologies. Nanoengineered materials, making use of the extraordinary properties of nanoparticles such as carbon nanotubes, could play their part in very strong but lightweight blades and other moving parts of wind turbines, eventually bringing down their overall size (aesthetically important), noise impact and manufacturing cost, increasing their generating efficiency. The current increase of solar cell sales at the rate of about 21 per cent a year could be boosted to much higher levels once nanotechnological breakthroughs are incorporated into novel and even more efficient solar energy devices.

At the moment it is a matter of giving environmental solutions far more nanotechnological attention, rather than feeding further consumerist overcon-sumption. Surprising possibilities may appear. One thought is this: how could nanoengineered materials and systems improve the prospects for geothermal energy tapping or the development of airship transport? Has anyone thought about it? Meanwhile, thousands of highly specialist electronics engineers worldwide are involved in applying nanotechnological innovations to the enhancement of violent computer games and the entertainment value of mobile phones. But instead of following the consumerist path of combustion engine car production, for example, rapidly developing countries like China and India could be assisted by Western and Japanese industrialists and governments to move quickly to a hydrogen-powered mass transit systems and wind turbine energy production, embodying the best of safe nanotechnologies. Apparently, China could double its current electricity generation from wind alone (Brown, 2003, p72). Nanotechnological modifications should also be sustainability-assessed as an interim means of reducing the 'external costs'

(environmental and public health damage, and so on) of existing technologies, taking into account any new externalities that they may introduce.

Carbon capture and storage techniques may well be greatly improved by a range of nano-efficiencies, if only governments and industries will focus their attention in this direction (Benson, 2005). Nanotechnological enhancement of computing power also gives us a way of generating much more accurate, and therefore generally persuasive, forecasting models for environmental damage scenarios, as in the case of recent supercomputer modelling of climate change. As human responsibility for the global environment grows the need for accurate facts about its condition will become essential for predictive, behaviour-change and remediation purposes.

Solar Power

Solar Power

Start Saving On Your Electricity Bills Using The Power of the Sun And Other Natural Resources!

Get My Free Ebook

Post a comment