Introduction technology and risk management

It is now accepted that 'the conventional separation (in engineering decisions involving risk) between the technical (the province of engineers) and the social (the province of managers, politicians and the public) cannot survive scrutiny' (Royal Academy of Engineering, 2002). Failure to recognize the need to manage all aspects of risk including the societal aspects has led to obvious

'difficulties' for certain technologies. The nuclear industry is well-known example, as are some forms of biotechnology including attempts to introduce genetically modified (GM) crops. Independently of the question of whether these technologies should have achieved public acceptance, it is clear that failure to engage in broad-based debate has introduced problems in achieving satisfactory regulatory bases for the introduction of new technologies, and that once opposition develops it is difficult to overcome (Mayer, 2002) (Chapter 10). Once a climate of suspicion starts to develop it may be amplified, for example by media reporting, into a 'crisis of trust' (O'Neill, 2002). The Royal Commission on Environmental Pollution has gone so far as to advocate a deliberative approach to involve public values in setting environmental standards, proposed a model for the kind of process needed (RCEP, 1998) and discussed how the approach might be applied specifically to regulating chemicals in products (RCEP, 2003).

It is probably fair to say that, while 'deliberative stakeholder engagement' is widely advocated, experience has not shown that any particular type of process is especially effective. In particular, it is not clear how a successful public debate can be conducted over an emerging technology, to develop an anticipatory approach to assessing its likely benefits and regulating its possible risks. Nanotechnology is an example for which such an approach is needed, given the emergence of public concerns ahead of widespread introduction of the technology.

In June 2003, the UK Government commissioned the two principal academies of science and engineering, the Royal Society and the Royal Academy of Engineering, to carry out an 'independent study into current and future developments in nanoscience and nanotechnologies and their impacts'. However, the study was carried out independently of Government, by a Working Group whose 14 members included engineers and scientists, a philosopher, a social scientist, a consumer champion and an environmentalist. The terms of reference included to 'identify what environmental, health and safety, ethical or societal implications or uncertainties may arise from the use of the technology, both current and future and to identify areas where regulation needs to be considered'. The Report of the Working Group was published in July 2004 (Royal Society and Royal Academy of Engineering, 2004). This paper draws largely on the Report of the Working Group, of which the author was a member, concentrating on the risk management aspects covered under the above two terms of reference quoted here.

Although embodying current thinking in risk management, this approach to examining and planning to manage the risks associated with an emerging technology is itself new. The Royal Society/Royal Academy of Engineering study has been hailed (Wilsdon and Willis, 2004) as 'a change in the scientific community's approach to the risks, uncertainties and wider social implications of new and emerging technologies - in many ways, it redefines the genre'. The present author is as sceptical of this enthusiasm as of the promises made for nanotechnology. However, the questions of whether nanotechnology and the prospective approach to risk management will turn out to be paradigm shifts provide the context for this paper.

Was this article helpful?

0 0

Post a comment