Lesson one substantial equivalence

In Canada, Health Canada and the Canadian Food Inspection Agency (CFIA) share joint responsibility for regulating novel plants. Plants with novel traits (PNTs) are defined as:

[P]lant varieties/genotypes that are not considered substantially equivalent, in terms of their specific use and safety both for environment and for human health, to plants of the same species in Canada, having regard to weediness potential, gene flow, plant pest potential, impact on non-target organisms and impact on biodiversity. PNTs may be produced by conventional breeding, mutagenesis, or more commonly, by recombinant DNA techniques. Safety assessments are required for all PNTs intended for importation and for environmental release in Canada.1

Novel foods do not have a history of safe human consumption and are produced by techniques that have not been used previously. Before reaching the marketplace, all novel plants and plant products are assessed for environmental, animal and human health safety. Health Canada considers how novel foods compare to traditional counterparts, examines nutritional characteristics, checks for the presence of toxins or anti-nutrients, and looks for potential allergens.2 The CFIA's role is to assess potential environmental risks associated with introducing novel crops and to oversee confined trials, unconfined release and variety registration. The CFIA is also involved in regulating products of biotechnology for animal feeds, fertilizers and veterinary biologics.

In spite of the efforts made by Health Canada and the CFIA to ensure the safety of novel foods, considerable debate over the use of substantial equivalence as a comparative approach exists. A recent report by the Royal Society of Canada (2001) entitled Elements of Precaution: Recommendations for the Regulation of Food Biotechnology in Canada concludes that substantial equivalence should not be used as a decision threshold for determining whether or not genetically modified (GM)-products should undergo rigorous scientific assessment. In section 8.1 of the report, members of the expert panel note:

In general, those who are responsible for the regulation of new technologies should not presume its safety unless there is reliable scientific basis for considering it safe. This approach is especially appropriate for those who are responsible for the protection of health and environment on behalf of the Canadian public.

Additionally, the expert panel rejected the use of substantial equivalence as a decision threshold because this approach is inconsistent with a precautionary approach for comparing new genetically modified products with existing products, and since an assessment based on 'superficial similarities' does not satisfy the burden of proof for safety.3

The concept of substantial equivalence implies that novel products (for example genetically modified foods) can be compared systematically to counterparts that have a history of safe usage. For example, corn with a Bt gene for insect resistance can be compared metabolically, nutritionally, and so on to other kinds of corn. With the exception of the Bt event, it is assumed that Bt corn and non-Bt corn are highly similar. Although regulators consider data on how these modifications are made, assessing the safety of novel foods is based on 'the product and not the process used to develop it' (Health Canada, 1994, p4). The use of substantial equivalence and a process-product model for regulating products of biotechnology is likely to find acceptance among future regulators of nanotechnology.

In Canada, no regulatory agency has jurisdiction presently over products of nanotechnology (Chapter 9). Although Canada is investing heavily in nanotechnology (for example in 2001, the National Research Council provided funding for the National Institute for Nanotechnology), little work on assessing the regulatory or social impacts of nanotechnology is being funded. Like with many new scientific and technological applications (for example the internet), regulation seems to occur as an afterthought or stems from concerns raised by a range of actors (for example NGOs) (Mehta, 1998). In Canada, it is likely that existing regulatory authorities will share responsibility for regulating the environmental and human health impacts resulting from nano products. Additionally, it is likely that nanotechnology will converge with other technologies like biotechnology.4 In this instance, the split of responsibility between Health Canada and the CFIA is likely to be maintained for nanotechnology.

An examination of the literature reveals David Forrest (1989) to be one of the earliest writers on the challenges of regulating nanotechnology. Forrest suggests that regulation of this technology should occur in four distinct phases based on the development of assemblers. Assemblers are machines that manufacture objects on an atom-by-atom or molecule-by-molecule basis. The development of assemblers will accelerate bottom-up, rather than top-down, approaches to manufacturing and machining. Top-down refers to precision machining that strips away material from the macroscopic to the nanoscopic level. Bottom-up approaches use synthetic chemistry, bioengineering tools, and devices like the 'nanohand' to physically place individual molecules into a predetermined location.5 Forrest believes that the development of assembler technology, and different levels of containment for pre- and post-release of nanoassembling devices, is key to understanding how best to regulate this technology. He suggests the following phases for regulating nanotechnology:

1 Pre-assembler: regulators should assist in writing standards for developers and stimulate critical public debate about nanotechnology.

2 Post-assembler, pre-assembler lab: once assemblers are developed, regulators should help developers create safe ways to contain this technology. At this stage, the use of assemblers is confined to laboratory conditions.

3 Post-assembler lab, Pre-active shield: when sealed assembler labs become available, scientists can begin developing advanced assemblers and new materials. At this stage, assemblers are still used for experiments and development work, and have limited commercial application.

4 Post-active shield: assemblers can now be used in a wide range of applications and settings. Malfunctioning nanomachines can be monitored, contained or decommissioned. In theory, measures should be in place to prevent runaway replication and the uncontrolled release of nanomachines that could damage ecosystems and human health.

There are several similarities, and notable differences, between Forrest's set of regulatory phases for nanotechnology and how Canada regulates genetically modified organisms. The development of nanoassembler technology is akin to developments in recombinant DNA technology. Once recombinant DNA technology became possible, developers used isolation and sterilization techniques to ensure that newly developed organisms were contained. The development and refinement of agronomic traits in genetically modified plants (for example herbicide resistance) led to commercial applications for this technology. Regulators assess the safety of these new organisms prior to release into the environment and marketplace. However, unlike Forrest's phases, little or no public consultation occurred in any of these phases for genetically modified foods. Additionally, genetically modified plants have been released into the environment with few existing safeguards in place for monitoring, containing or neutralizing plants that may harm non-target insects and other organisms, facilitate the development of 'superweeds' through pollen flow, and potentially damage the viability and marketability of organic farming.

With biotechnology, the use of substantial equivalence and reliance upon an artificial distinction between product and process has fostered a regulatory approach that excludes the public from participating in a meaningful way. If future regulators of nanotechnology adopt this approach, the public is likely to be excluded systematically under the guise of 'science-based assessment.'

0 0

Post a comment